

NBS 22, ca. 1965

E

REFE

BUREAU

Light stable isotope reference materials: Principles and proper use

Arndt Schimmelmann

Indiana University, Bloomington, Indiana, USA arndtschimme@gmail.com

VSMOW, ca. 1980

TunTwin Summer School, 18 - 21 April 2023, Ljubljana, Slovenia

Topics to be covered:

- Definition and function of stable isotope reference materials (RMs)
- Convoluted history of select RMs
- Array of competing RM outlets
- Examples of organic RM production
- Normalization of raw data with RMs
- Proper reporting of delta values

more precise

Reference Materials (RMs) are needed to position your data along common delta scales.

RMs can be:

- Gas, liquid, or solid
- Expensive *versus* cheap
- Perishable versus stable
- Organic *versus* inorganic
- Available versus hard-to-get
- Toxic versus harmless
- Volatile vs. non-volatile
- Pure compounds *versus* mixtures

Primary RMs are "international measurement standards" as defined in the *International Vocabulary of Metrology* (VIM3). They and define the scale zero or an anchor point and, if applicable, the scale span. These materials are assigned stable isotope δ -values by consensus without uncertainty, although subsampling and storage may introduce isotope fractionation. Even some primary RMs are known to have developed problems over time.

Secondary RMs are typically prepared by qualified (groups of) laboratories and have been calibrated against primary RMs. The δ -values of secondary RMs are subject to amendments and always carry analytical uncertainty. It is recommended that authors publish the used δ values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective stable isotope scale.

Lower-level RMs can be calibrated against higher-level RMs by laboratories to serve as working standards.

RMs are not permanent!

Precision versus Accuracy Goal: Improved accuracy and comparability of reported isotopic composition (within analytical uncertainty) for the same material measured in different laboratories.

One laboratory

Several laboratories

Slide provided by Haiping Qi, USGS

The long drama of the [Vienna] Pee Dee Belemnite (PDB, VPDB) isotopic scale

PDB was made in the early 1950s from powdered belemnite fossils and defined "zero permil" on the carbon delta scale. PDB existed as a small amount and was soon exhausted. It no longer exists today.

In 1982, NBS 19 from powdered limestone/marble was sieved into size fractions. It served for many years as one of two anchors of the **VPDB** scale where no material defines the zero anchor point on the carbon delta scale.

After recognizing grain size problems with supplies of NBS 19 at NIST around 2015, possible replacement carbonates were developed. NBS 19 may be replaced by IAEA-603 calcite or by a USGS carbonate reference material.

Fundamental dangers for solid reference materials:

- Homogeneity
- Grain size
- Safe storage in air
- Human error when handling powders

Disappointment of LSVEC as a carbon and oxygen stable isotope RM

Lithium carbonate was prepared by H. Svec at Iowa State University by bubbling ¹³C-depleted carbon dioxide into alkaline lithium hydroxide solution and drying the precipitate. Together with NBS 19, it served as a second anchor LSVEC along the carbon VPDB scale until 2016 when it was recognized that LSVEC absorbs CO_2 from the atmosphere upon the repeated opening of vials. LSVEC has been replaced by USGS44 high purity CaCO₃.

	REFERENCE PRODUCT	'S ID TRADE			Sear	About Us Links News Customer Info	
Home Reference M	aterials Analytical Meth	ods Publications	Interlaboratory Stu	udies Events	ALMERA		
Home Reference Products	Reference Material Online Ca	talog > Stable Isotopes >	Materials with known ¹³ C	, ¹⁸ O and ⁷ Li isotopic c	composition > LSVEC		
Reference Products About IAEA Reference	LSVEC, Lith	nium Carboi	nate			LSVEC Lithium Carbonate, 0.5g	
Reference Material Online Catalog	eference Material Online atalog • Price per Unit: 150 EUR						
Radionuclides Trace Elements & Methyl Mercury	 Date of Release Reference She Contact point: 	Add to Basket					
Organic Contaminants Stable Isotopes	The reference material performed by thermal ic	LSVEC is intended for onisation mass-spectro	calibration of lithium s metry and ICP-MS.	table isotope meas	urements [1, 2]	Ny Shopping Cart Total €0	
Ordering Information	Analyte	Value	Unit S	D	R/I/C	Go to Shopping Cart	
Miscellaneous Documents	δ ⁷ Li	0	‰ n/	'a	С		
How to contact us	7 _{Li/} 6 _{Li}	0.08215	⁷ Li/ ⁶ Li 0.	00023	R	Your Account	
News and Announcements	(R/VC) Classification assigned t	o the property value for analyt	e (Recommended/Information	/Certified)		View My Orders	
Publications	References:					Help and Service	
Links		t al. (1997) Calibrater	d measurements of t	he isotonic compo	sition and atomic	Terms of Service	
Events	weight of the	natural Li isotopic ref	erence material IRMN	1-016. International	Journal of Mass	Contact Us	
40+ Years Delivering Quality to Labs Worldwide	Spectrometry,	171(1-3): p. 263-268.	https://doi.org/10.1016	6/S0168-1176(97)00)125-0		
ALMERA	2. 2. Brand, W.A analysis (IUP	AC Technical Report	t). Pure and Appli	ed Chemistry. 86	(3): p. 425-467.		
Nuclear Instrumentation	https://doi.org/	10.1515/pac-2013-102	3	-			

LSVEC is still being distributed, but only as a lithium stable isotope RM.

Major resource with useful references by IUPAC **International Union of Pure and Applied Chemistry**:

- **History** of RMs dating back to the 1950s -
- Delta notation (δ) -
- Primary and secondary isotopic RMs (as of 2014)
- **Identical Treatment Principle** -

DE GRUYTER

DOI 10.1515/pac-2013-1023 — Pure Appl. Chem. 2014; 86(3): 425–467

IUPAC Technical Report

Willi A. Brand*, Tyler B. Coplen, Jochen Vogl, Martin Rosner and Thomas Prohaska Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)¹

Brand et al. (2014) https://doi.org/10.1515/pac-2013-1023

Table 2 The $\delta^2 H$ values of hydrogen isotopic reference materials.^a

VSMOW 8535 Water <u>Q</u> ^b None [34] Qua SLAP 8537 Water -428.5 ‰ 0.1 [35] Qua -427.8 ‰ 0.5 [36] -428.8 ‰ 1.3 [37] -425.8 ‰ 1.0 [38]	arantined ^c arantined ^c
SLAP 8537 Water -428.5 0.1 [35] Qua -427.8 0.5 [36] -428.8 1.3 [37] -425.8 1.0 [38] -425.8 1.0 [38]	arantined ^c
-427.8 ‰ 0.5 [36] -428.8 ‰ 1.3 [37] -425.8 ‰ 1.0 [38]	
-428.8 ‰ 1.3 [37] -425.8 ‰ 1.0 [38]	
-425.8 ‰ 1.0 [38]	
<mark>–428 ‰</mark> b None [34]	
SMOW n/a 0 – [39] Sca	le discontinued [4]
VSMOW2 Water 0 0.3 ‰ [40]	
SLAP2 Water -427.5 % 0.3 % [40]	
GISP 8536 Water -189.7 % 0.9 % [41]	
GISP2 Water –258.3 ‰ 0.3 ‰ IAEA Not	yet released
NBS 1 Water -47.6 ‰ n/a [39] Exh	austed
NBS 1a Water -183.3 % n/a [39] Exh	austed
USGS45 Water –10.3 ‰ 0.4 ‰ [42]	
USGS46 Water –235.8 ‰ 0.7 ‰ [43]	
USGS47 Water –150.2 ‰ 0.5 ‰ [44]	
USGS48 Water –2.0 ‰ 0.4 ‰ [45]	
NBS 22 8539 Oil -119.2 ‰ 0.7 ‰ [46]	
-116.9 ‰ 0.8 ‰ [47]	
NBS 30 8538 Biotite -65.7 ‰ 0.3 ‰ [41]	
NGS1 8559 Natural gas (coal origin) –138 ‰ (CH4) ~5 ‰ [48] Exh	austed
NGS2 8560 Natural gas (petroleum origin) -173 ‰ (CH ₄) ~2.5 ‰ [48] Exh	austed
NGS2 8560 Natural gas (petroleum origin) $-121 \% (C_2H_6) \sim 7 \%$ [48] Exh	austed
NGS3 8561 Natural gas (biogenic) –176 ‰ (CH ₄) ~1 ‰ [48] Exh	austed
IAEA-CH-7 8540 Polyethylene foil -100.3 ‰ 2.0 ‰ [41]	
USGS42 Human hair (Tibetan) -78.5 ‰ 2.3 ‰ [49, 50]	
USGS43 Human hair (Indian) –50.3 ‰ 2.8 ‰ [49, 50]	

Primary RMs

Secondary RMs

^aValues for hydrogen isotope deltas are supplied with one place after the decimal point. They are listed in chronological order of the cited literature. In the case of multiple entries, values recommended by the Commission of Isotopic Abundances and Atomic Weights (CIAAW) are listed in bold font; those defining a scale are underlined in bold font. The latter have no associated uncertainty (by definition).

^bExact values defining the $\delta^2 H_{VSMOW-SLAP}$ scale. Please note that both scale-defining materials, VSMOW for the scale origin and SLAP for the scale span, are given without uncertainty. These are fixed consensus values. They cannot be changed without changing the scale as well.

^cStill available from the Reston Stable Isotope Laboratory of the U.S. Geological Survey.

Brand et al. (2014) https://doi.org/10.1515/pac-2013-1023

Shop around to get the best deal...

No single supplier has all RMs available. Some suppliers may be cheaper than others. First obtain an overview on all available RMs and then select those that are useful and affordable for your needs.

NBS 22. **NIST Store** NIST: ca. 1965 Standard Reference Materials -Contact Us Calibrations -Standard Reference Data -Help-\$502 for 1 mL SRM Chemical Composition High Purity NBS22 Oil (Carbon and Hydrogen Isotopes in Oil) Home UREAU Product Search NBS22 Oil REF (Carbon and Hydrogen Isotopes in Oil) No Browse NIST products by name. NBS22 Oil (Carbon and Hydrogen Isotopes in Oil) Search Products SKU: 8539 Availability: Available for Purchase My Cart **IAEA: €150 for 1 m** 8539 Price: \$502.00 You have no items in your shopping BS22 Oil cart IAEA.org NUCLEUS IAEA Reference Products for Environment and frade Q Search this site Home Radionuclides Trace Elements Organic Compounds Stable Isotopes Proficiency Tests ALMERA Network Analytical Methods Publications

United States Geological Survey

Reston Stable Isotope Laboratory

Report of Stable Isotopic Composition

Reference Materials NBS 22a and USGS78

(Hydrogen and Carbon Isotopes in Vacuum Pump Oils)

NBS 22a

Vacuum oil, regular

\$250 for 1 mL

reliable, new material!

1 mL	\$250	δ^{2} H = -120.4 ‰
		δ^{13} C = -29.72 ‰

NIST Store

Calibrations - Standard Reference Data - Standard Reference Materials - Help - Contact Us

Sig

United States Geological Survey

Reston Stable Isotope Laboratory

Report of Stable Isotopic Composition

Reference Materials USGS32, USGS34, and USGS35

(Nitrogen and Oxygen Isotopes in Nitrate)

USGS35

Sodium nitrate

0.3 g

 δ^{15} N = +2.7 ‰ δ^{18} O = ~ +57 ‰

	NIST Store	Sign-In/
02 for	Calibrations - Standard Reference Data - Standard	Reference Materials - Help - Contact Us
	Home / SRM / Chemical Composition / High Purity / IAEA-CH-7 (Cart	on and Hydrogen Isotopes in Polyethylene Foil)
.5 g	Product Search IAEA-CH-7 (Carbon and Hydrogen Iso	topes in Polyethylene Foil)
_	Browse NIST products by name.	IAEA-CH-7 (Carbon and Hydrogen Isotopes in Polyethylene Foil)
	Search Products Q	SKU: 8540 Availability: Available for Purchase
	My Cart 🔹	Price: \$502.00

\$5 3

CIAAW CIAAW

COMMISSION ON ISOTOPIC ABUNDANCES AND ATOMIC WEIGHTS INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

http://ciaaw.org/reference-materials.htm

<u>NOT</u> a supplier, but offers detailed information on RM isotope ratios; no complete listing, some outdated info

Distributor of RMs	Web portal or contact	Comments	RM categories
AirLiquide (international)	http://isotope.airliquide- expertisecenter.com/	Gases like CO ₂ and SO ₂ from cylinders can only serve as monitoring gases in on-line applications	Air, trace gases in air, CO, CO ₂ , SO ₂ , NO _x , SF ₆ , hydrocarbons
ANSTO (Australia)	<u>tde@ansto.gov.au</u>	NDF-PE77 "fishing line" is isotopically indistinguishable from USGS77 powder and can be cut to customized size and weight	Polyethylene line NDF- PE77
Elemental Microanalysis (United Kingdom)	http://www.elementalmicroanalysis.co m/product_list.php?top=IRMS%20sup plement&category=204⊂=Certified	Insufficient information about isotopic calibration. Website suggests single-point isotopic calibrations against other RMs (viewed 21 March 2023)	waters, carbonate, gelatin, sediment, soil, protein, flours, wood powder, urea
ERM [®] , European Reference Materials (Belgium)	https://crm.jrc.ec.europa.eu/c/By- application-field/Stable- isotopes/40476/	ERM [®] and IRMM RMs are identical and available from various vendors	Inorganic RMs, sulfur
IAEA, International Atomic Energy Agency (Austria)	https://nucleus.iaea.org/sites/Referen ceMaterials/Pages/Stable- Isotopes.aspx	Not in compliance with IUPAC (21 March 2023)	Many inorganic RMs, including waters. Few organic RMs

Distributor of RMs	Web portal or contact	Comments	RM categories
Indiana University, Department of Earth and Atmospheric Sciences (USA)	https://hcnisotopes.earth.indiana.edu/r eference-materials/index.html	e.g., Schimmelmann et al., 2020, <i>J.</i> <i>Agricult. Food Chem.</i> 68 (39), 10852-10864. <u>https://doi.org/10.1021/acs.jafc.0c02</u> <u>610</u>	Organic RMs (gases, liquids, solids, GC- IRMS mixtures)
IRMM, Institute for Reference Materials and Measurements (Belgium)	https://crm.jrc.ec.europa.eu/c/By- application-field/Stable- isotopes/40476/	RMs from ERM [®] and IRMM are identical and available from various vendors	Inorganic RMs, sulfur
Airgas (formerly Isometric Instruments) (Canada)	https://www.airgas.com/stable- isotopes/form	Website offers insufficient documentation of isotopic characterisation (13 September 2018)	ALPHAGAZ ^{m} stable isotope gases N ₂ , CO ₂ , O ₂ , H ₂ . Methane in air
NIST, National Institute of Standards and Technology (USA)	https://tsapps.nist.gov/srmext/tables/1 04.10.pdf	Not in compliance with IUPAC (21 March 2023)	Mostly inorganic, few organic RMs
NMI, National Measurement Institute (Australia)	chemref@measurement.gov.au; available only for WADA-accredited forensic laboratories	Tobias and Brenna, 2018, <i>Drug</i> <i>Testing and Analysis</i> 10 (4), 781- 785 <u>https://doi.org/10.1002/dta.2309</u>	Steroids for carbon stable isotope ratios only
Sercon Limited, Crewe (UK)	https://sercon- instruments.com/csw/standards/stand ards-search/	Not in compliance with IUPAC (21 March 2023)	Pure gases N_2 , CO_2 , O_2 , H_2 , CH_4 , SO_2 , H_2S , SF_6 . Many organic RMs.
More			

Web portal or contact	Comments	RM categories
https://www.shoko-	RMs partially co-developed with	Amino acids (see
sc.co.jp/products/stable_isotope/reag	JAMSTEC and Indiana University;	screenshots at bottom
ent/standard/index.html	the website is in Japanese only.	of this page) and some
	Contacts: info@shoko-sc.co.jp	waters
	takeshi-tokai@shoko.co.jp	
	h-satake@shoko.co.jp	
https://www.usgs.gov/labs/reston-	Up-to-date isotope data on website;	Wide variety of organic
stable-isotope-laboratory/reference-	waters available in crimp-sealed	and organic RMs
materials-and-calibration-services	silver capillary segments	
	Also available: LIMS for stable	
	isotope laboratories	
	https://isotopes.usgs.gov/research/t	
	opics/lims.html	
https://energy.usgs.gov/Geochemistry	Dai et al., 2012, Chemical Geology	Natural gas RMs of
Geophysics/GeochemistryLaboratorie	310-311 , 49-55.	different geological
s/GasStandards.aspx	https://doi.org/10.1016/j.chemgeo.2	origins (coal-related,
	012.03.008	biogas, oil-related)
	Web portal or contact https://www.shoko- sc.co.jp/products/stable_isotope/reag ent/standard/index.html https://www.usgs.gov/labs/reston- stable-isotope-laboratory/reference- materials-and-calibration-services https://energy.usgs.gov/Geochemistry Geophysics/GeochemistryLaboratorie s/GasStandards.aspx	Web portal or contactCommentshttps://www.shoko- sc.co.jp/products/stable_isotope/reag ent/standard/index.htmlRMs partially co-developed with JAMSTEC and Indiana University; the website is in Japanese only. Contacts: info@shoko-sc.co.jp takeshi-tokai@shoko.co.jphttps://www.usgs.gov/labs/reston- stable-isotope-laboratory/reference- materials-and-calibration-servicesUp-to-date isotope data on website; waters available in crimp-sealed silver capillary segments Also available: LIMS for stable isotope laboratories https://isotopes.usgs.gov/research/t opics/lims.htmlhttps://energy.usgs.gov/Geochemistry Geophysics/GeochemistryLaboratorie s/GasStandards.aspxDai et al., 2012, Chemical Geology 012.03.008

Amino	Materials	Product No.	Lot	δ13C vsVPDB(‰)	δ15N vsAir(‰)	Materials	Product No.	Lot	δ130 vsVPDB(‰o)	ō15N vsAir(‰)
, anni de	L-Histidine	AZ1Z0	M6M9675	-11.4	-7.60	L-Aspartic Acid	AZ203	M1B6432N35		-23.9	35.4
acius	L-Histidine	AZ1Z0	M5P8062	-10.7	-7.60	L-Glutamic Acid	AZ104	M1E7683N45		-13.8	45.6
from	L-Alanine	AZ1Z0	M5R9452	-19.9	-1.20	L-Alanine	AZ104-01	M0R3337N40		-17.9	43.3
SHOKO	L-Alanine Glycine	AZ1Z0 AZ300	M8A0384 M9R2283	-18.5	-1.02	Phenylalanine	AZ100-01	MON1811NA		-11.2	1.70
Shorto.	L-Alanine	AZ100	M6H8119	-19.6	1.54	Glycine	AZ3Z2CN	CN-01		-32.4	-25.9
	L-Alanine	AZ100	M9R2064	-19.9	1.79	L-Methionine	AZ2Z0	D00129520		-29.3	-3.87
	L-Alanine	AZ100	SS05	-19.6	3.70	L-Leucine	AZ200	LAH0629		-28.3	5.57
	L-Alanine	AZ100	M6R397405	-19.6	5.00	L-(+)-Norleucine	AZ201	LAM3141mix		-28.7	18.2
	L-Alanine	AZ100	SS09	-19.6	8.70	L-Hydroxyproline	AZ1Z0	LAM3262		-12.5	-9.08
	L-Alanine L-Alanine	AZ101 AZ101	M6R397410 SS13	-19.6 -19.6	10.1 13.7	Amino Acid Set 9**	ACZ1Z2NZ204SET	(3nmol N)	•		
	L-Alanine	AZ101	SS16	-19.6	16.1	**; Asp,Glu,Ala,Ph	e,Gly,Met,Leu,Ile,Hy	/p Set		\cap	0
	L-Alanine	AZ102	M0H912820	-19.9	20.6						
	L-Alanine	AZ102	SS25	-19.6	26.1				0	Selling	Unit:100mg

RESTON STABLE ISOTOPE LABORATORY (RSIL)

Reference Materials and Calibration Services

By Reston Stable Isotope Laboratory (RSIL)

Prices for Isotopic Reference Materials and Calibration Services

Click on ID Number to access the Report of Isotopic Composition. *Last updated: May 3, 2022.*

Reference Number and Report of Isotopic Composition	Description of Material	Amount	Price	Isotope Values
USGS24	Graphite	0.8 g	\$158	δ^{13} C =16.05 ‰
USGS25	Ammonium sulfate	> 0.6 g	\$297	δ^{15} N = -30.41 ‰
USGS26	Ammonium sulfate	> 0.8 g	\$297	δ^{15} N = +53.75 ‰
USGS32	Potassium nitrate	0.3 g	\$344	δ^{15} N = +180 ‰ δ^{18} O = ~ +25.5 ‰
USGS34	Potassium nitrate	0.3 g	\$344	δ^{15} N =1.8 ‰ δ^{18} O = ~28 ‰
USGS35	Sodium nitrate	0.3 g	\$344	δ^{15} N = +2.7 ‰ δ^{18} O = ~ +57 ‰
		1		

Indiana University offers a large variety of organic RMs

https://hcnisotopes.earth.indiana.edu/doc/alphabetical-list-of-all-reference-materials.pdf https://hcnisotopes.earth.indiana.edu/reference-materials/index.html

Version 27 May 2021 Alphabetic listing of compounds formula, CAS #, purity, amount, type of packaging, price in US \$	Structure or comment	δ ² Η (mean value in ‰ vs. VSMOW, ± 1σ) (range) (# of measurements)	δ ¹³ C (mean value in ‰ vs. VPDB, ± 1σ) (range) (# of measurements)	δ ¹⁵ N (mean value in ‰ vs. AIR, ± 1σ) (range) (# of measurements)	δ^{18} O and δ^{24} S (mean values in ‰ vs. VSMOW or VCDT, ± 1 σ) (range) (# of measurements)	aromatic ester	for EA	for GC gas	liquid volatile halogen	for deri- vatization
Acetanilide #1, C ₈ H ₉ NO, CAS # 103-84-4, in glass vial, 5 g US \$250, 2 g US \$150	H-ZO	not determined (contains exchangeable hydrogen)	-29.53 ± 0.01 ‰ from -29.51 to -29.54 ‰ n = 6	+1.18 ± 0.02 ‰ from +1.16 to +1.21 ‰ n = 4	not determined					
Acetanilide #2, C ₈ H ₉ NO, CAS # 103-84-4, in glass vial, 2 g US \$250	H-NO	not determined (contains exchangeable hydrogen)	-29.50 ± 0.02 ‰ from -29.48 to -29.53 ‰ n = 4	+19.56 ± 0.03 ‰ from +19.53 to +19.60 ‰ n = 7	not determined					
Acetanilide #3, C ₈ H ₉ NO, CAS # 103-84-4, in glass vial, 2 g US \$250	H-NO	not determined (contains exchangeable hydrogen)	-29.50 ± 0.02 ‰ from -29.49 to -29.52 ‰ n = 4	+40.57 ± 0.06 ‰ from +40.52 to +40.66 ‰ n = 6	not determined					
Acetic anhydride, C ₄ H ₆ O ₃ , CAS # 108- 24-7, 99.5 %, ca. 1 mL sealed under argon in glass ampoule, US \$250.		-133.2 ± 2.1 ‰ from -131.5 to -136.0 ‰ n = 4	-20.98 ± 0.03 ‰ from -20.94 to -21.01 ‰ n = 4	not applicable	not determined					
L-Alanine, C ₃ H ₇ NO ₂ , CAS # 56-41-7, produced by SI Science in Japan, 100 mg in crimp-sealed glass vial, US \$250	H ₃ C OH NH ₂	not determined (contains exchangeable hydrogen)	-17.93 ± 0.02 ‰ from -17.90 to -17.96 ‰ n = 5	+43.25 ± 0.07 ‰ from +43.16 to +43.34 ‰ n = 4	not determined					
5α-Androstane #3, C ₁₉ H ₃₂ , CAS # 438- 22-2, at least 5 mg in crimp-sealed glass vial, US \$250		-293.2 ± 1.0 ‰ from -292.0 to -294.6 ‰ n = 6	- 31.35 ± 0.01 ‰ from -31.34 to -31.37 ‰ n = 5	not applicable	not applicable					
Benzene #1, C ₆ H ₆ , CAS # 71-43-2, 99.8 %, 0.5 mL sealed under argon in glass ampoule, US \$250	H H C C C C C C C C H H	-62.4 ± 1.1 ‰ from -60.9 to -63.7 ‰ n = 5	-27.68 ± 0.01 ‰ from -27.67 to -27.69 ‰ n = 4	not applicable	not applicable					
Banzole acid #A. C.H.CO. CAS # 65-85-0: inquire about availability	одон	net determined (contains exchangeable hydrogen)	-28.81 %. Coden et al 2006	not applicable	+23.14 ± 0.19 ‰ Brand et al. 2009 https://doi.org/10.1002/re					

Compound-specific hydrogen and carbon stable isotope RM mixtures in hexane available from Indiana University

How are RMs made and why are they expensive?

International RMs are typically produced by experienced laboratories by, or in collaboration with international or governmental agencies. Ring-testing by groups of qualified laboratories enhances trustworthiness. The overall cost of developing a single RM often exceeds € 20,000. Purchasing an RM is not like buying a chemical. You invest in quality assurance.

19 organic RMs USGS61 to USGS78 and NBS 22a

Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, *n*-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils

Reference ID	Chemical name	Structure or composition of material	Ring-test reference values with combinedstandard uncertainties (mUr or ‰) δ^{2} H _{VSMOW-SLAP} δ^{13} C δ^{13} C δ^{15} Nair			
USGS61	caffeine	CH3	+96.9 ± 0.9	-35.05 ± 0.04	-2.87 ± 0.04	
USGS62	caffeine		-156.1 ± 2.1	-14.79 ± 0.04	+20.17 ± 0.06	
USGS63	caffeine	CH3	+174.5 ± 0.9	-1.17 ± 0.04	+37.83 ± 0.06	
IAEA-600*	caffeine	H ₃ C <mark>"</mark>	-156.1 ± 1.3	-27.73 ± 0.04	+1.02 ± 0.05	
USGS64	glycine	0	no values	-40.81 ± 0.04	+1.76 ± 0.06	
USGS65	glycine		the presence of	-20.29 ± 0.04	+20.68 ± 0.06	
USGS66	glycine	ОН	exchangeable hydrogen	-0.67 ± 0.04	+40.83 ± 0.06	
USGS67	<i>n</i> -hexadecane		-166.2 ± 1.0	-34.50 ± 0.05	n.a.	
USGS68	<i>n</i> -hexadecane	C ₁₆ H ₃₄	-10.2 ± 0.9	-10.55 ± 0.04	n.a.	
USGS69	<i>n</i> -hexadecane		+381.4 ± 3.5	-0.57 ± 0.04	n.a.	
USGS70	icosanoic acid methyl ester (C ₂₀ FAME)		–183.9 ± 1.4	-30.53 ± 0.04	n.a.	
USGS71	icosanoic acid methyl ester (C ₂₀ FAME)	C ₂₀ H ₃₉ OOCH ₃	-4.9 ± 1.0	-10.50 ± 0.03	n.a.	
USGS72	icosanoic acid methyl ester (C ₂₀ FAME)	-	+348.3 ± 1.5	-1.54 ± 0.03	n.a.	
USGS73	L-valine		no values	-24.03 ± 0.04	-5.21 ± 0.05	
USGS74	L-valine	ОН	the presence of	-9.30 ± 0.04	+30.19 ± 0.07	
USGS75	L-valine		exchangeable hydrogen	$+0.49 \pm 0.07$	+61.53 ± 0.14	
USGS76	methylheptadecanoate (C ₁₇ FAME)	C ₁₇ H ₃₃ OOCH ₃	-210.8 ± 0.9	-31.36 ± 0.04	n.a.	
IAEA-CH-7*	polyethylene foil	(C ₂ H ₄) _n	-99.2 ± 1.2	-32.14 ± 0.05	n.a.	
USGS77	polyethylene powder (also extruded string)	(C ₂ H ₄) _n	-75.9 ± 0.6	-30.71 ± 0.04	n.a.	
NBS 22*	oil	n.a.	-117.2 ± 0.6	-30.02 ± 0.04	n.a.	
NBS 22a	vacuum oil, regular	n. a.	-120.4 ± 1.0	-29.72 ± 0.04	n.a.	
USGS78	vacuum oil, ² H- enriched	n.a.	+397.0 ± 2.2	-29.72 ± 0.04	n.a.	

Caffeines USGS61, USGS62, USGS63

We tested and measured more than 10 batches from different suppliers. We finally chose two suppliers of the bulk raw materials plus several isotopically spiked caffeines from various suppliers, for example:

- Caffeine, 99.92 %, Alfa-Aesar
- Caffeine, Coffein Compagnie Bremen
- Caffeine 3-methyl-¹³C, 99 atom % ¹³C, Cambridge Isotope Laboratories, Inc.
- Caffeine 1,3-¹⁵N₂, 99 atom % ¹⁵N, Cambridge Isotope Laboratories, Inc.
- Caffeine-d3 (1-methyl-d3), 99.8 atom % ²H, ICON

Reference ID	Chemical name	Structure or composition of material	Ring-test reference values with combined standard uncertainties (mUr or ‰) $\delta^2 H_{VSMOW-SLAP}$ $\delta^{13} C_{VPDB-LSVEC}$ $\delta^{15} N_{Air}$			
USGS61	caffeine	CH3	+96.9 ± 0.9	-35.05 ± 0.04	-2.87 ± 0.04	
USGS62	caffeine	NNN	–156.1 ± 2.1	-14.79 ± 0.04	+20.17 ± 0.06	
USGS63	caffeine	N CH3	+174.5 ± 0.9	-1.17 ± 0.04	+37.83 ± 0.06	
IAEA-600*	caffeine	H ₃ C <mark>0</mark>	–156.1 ± 1.3	-27.73 ± 0.04	+1.02 ± 0.05	

Distribution of USGS-caffeines: 0.5 g of powder in glass vial.

 δ^{13} C USGS61 caffeine

Expanded uncertainty

Standard uncertainty

Glycines USGS64, USGS65, USGS66

- Glycine, 99+ %,10 kg
- Isotopically spiked glycines with ¹³C-enrichments at molecular sites 1 or 2. Our products employ ¹³C spike ratios 1:2 in medium-enriched glycine and 2:1 in highly-enriched glycine for future use in site-specific carbon isotopic measurements. We also use 2,2-²H₂ and ¹⁵N-spiked glycines.

	Reference ID	Chemical name	Structure or composition of material	erence values with $d_{\rm verta}$ uncertainties (m $\delta^{13}C_{\rm VPDB-LSVEC}$	with combined (mUr or ‰) $\gtrsim \delta^{15} N_{Air}$	
	USGS64	glycine	0	no values	-40.81 ± 0.04	+1.76 ± 0.06
	USGS65	glycine		the presence of	-20.29 ± 0.04	+20.68 ± 0.06
	USGS66	glycine	ОН	exchangeable hydrogen	-0.67 ± 0.04	+40.83 ± 0.06
C o L	C₂H₅NO₂ dorless so <mark>C and EA</mark>	lid for GC, applications.				
<i>L</i> 0 v	<i>Distribution</i> .5 g of pov ial.	: vder in glass		Juniminul		unupinin

L-valines USGS73, USGS74, USGS75

Raw materials: L-valine, 99 %, 5 kg, *Alfa Aesar;* L-valine, 4 kg, *Amino GmbH*. Site-specific ²H- and ¹³C-enrichments at different molecular sites 1, 2 and 3 are currently not measurable with high precision, but were incorporated in RMs for future use in site-specific carbon and hydrogen isotopic characterization: L-valine #2: Spike ratio 2:1 for H-molecular positions 3 and 2; spike ratio 2:1 for Cmolecular positions 2 and 1. L-valine #3: Spike ratio 1:2 for H-molecular positions 3 and 2; spike ratio 1:2 for C-molecular positions 2 and 1.

Reference ID	Chemical name	Structure or composition of material	Ring-test reference values with combined standard uncertainties (mUr or ‰) $\delta^2 H_{VSMOW-SLAP}$ $\delta^{13} C_{VPDB-LSVEC}$ $\delta^{15} N_{Air}$			
USGS73	L-valine	H ₂ N OH	no values indicated due to the presence of exchangeable hydrogen	-24.03 ± 0.04	-5.21 ± 0.05	
USGS74	L-valine			-9.30 ± 0.04	+30.19 ± 0.07	
USGS75	L-valine			+0.49 ± 0.07	+61.53 ± 0.14	

 $C_2H_5NO_2$ odorless solid for GC, LC and EA applications.

Distribution: 0.5 or 0.1 g of powder in glass vial.

Ten food matrix reference materials USGS82 to USGS91

Honeys (carbohydrate-rich):

- honey from tropical southern Vietnam USGS82 (fresh from wild bee hives)
- honey from prairie near Saskatoon, Canada USGS83 (commercial product)

Vegetable oils (lipids):

- olive oil from Sicily, Italy USGS84 (blended oil provided by Federica Camin)
- olive oil from coastal desert in Peru USGS85 (commercial product)
- peanut oil from southern Vietnam USGS86 (directly from rural producer)
- corn oil USGS87 (i.e. from a C4 plant, ¹³C-rich; commercial product from U.S.A.)

Collagens (proteinaceous):

- marine collagen powder from wild-caught fish USGS88 (commercial product)
- porcine collagen powder **USGS89** (powder, provided *via* FOA/IAEA)

Flours (carbohydrate-rich):

- flour from millet USGS90 (provided by Federica Camin, from Tuscany in Italy)
- flour from rice, from southern Vietnam USGS91 (directly from local producer)

Fresh raw honey in southern Vietnam

Filtration through multiple layers of cheese cloth

Dead bee

Heated tent for dripping honey into glass flasks

Processing of honey

0.25-µL aliquots of waters, oils and honeys were crimpsealed into segments of silver tubing for loading into EA carousels.

Coplen, T.B. and Qi, H. (2010) Applying the silver-tube introduction method for thermal conversion elemental analyses and a new δ^2 H value for NBS 22 oil. *Rapid Communications in Mass Spectrometry* **24** (15), 2269-2276. https://10.1002/rcm.4638

Qi H, Gröning M, Coplen TB, Buck B, Mroczkowski SJ, Brand WA, Geilmann H, Gehre M (2010) Novel silver tubing method for quantitative introduction of water into high temperature conversion systems for stable hydrogen and oxygen isotopic measurements. *Rapid Communications in Mass Spectrometry* **24** (13), 1812-1827. https://doi.org/10.1002/rcm.4559

RM waters in silver tubes are available from the USGS in Reston, Virginia, USA: <u>https://isotopes.usgs.gov/lab/referencematerials.html</u>

Filling of silver capillary tubing with viscous honey at 60 °C

Photographs kindly provided by Dr. Haiping Qi, U.S. Geological Survey, Reston, Virginia

Glass ampoules with oil sealed under argon

Borosilicate flask

with honey,

Narrowing neck of roundbottom borosilicate flask Borosilicate flask after filling with oil

27

Planning of analyses

Obtain \geq 2 suitable international primary or secondary isotope reference materials (RMs) for your analytical application that should **bracket the** δ **-values that you expect** from your unknown samples. The δ **-value bracket size** should match the size of the δ -scale.

Optional: At a time when your stable isotope ratio analytical instruments work well, calibrate your own **tertiary laboratory RMs** against international RMs. The chosen RMs should bracket the δ -values that you expect from your unknown samples.

Measure the \geq 2 RMs and your unknown samples in a single analytical session in identical fashion, thus adhering to the **principle of Identical Treatment (IT) of standard and sample**. The resulting δ -values are raw, uncalibrated data.

Scale normalisation

Use proper statistical methods to **linearly scale-normalise raw** δ -values towards matching of δ -values of RMs with their prescribed δ -values.

Reporting of data

When describing analytical methods, explain which primary, secondary or tertiary RMs were used and which δ -values were assigned to each RM.

Propagate the errors of scale-normalised δ **-values** based on the empirically determined precision of repeat analyses and the accuracy of RM δ -values.

Use **SI-mandated and IUPAC-recommended nomenclature** when naming isotopes and expressing δ -values in terms of permil (‰) or milliurey (mUr).

Flowchart for isotope abundance analysis observing the identical treatment principle for both samples and RMs serving as scale anchors.

Meier-Augenstein and Schimmelmann (2019) *Isotopes in Environmental and Health Studies.* Electronic preprint: <u>https://doi.org/10.1080/10256016.2018.1538137</u>

Impact of RM choice as end-points for δ^2 H scale normalisation on correction equation and corrected δ^2 H values.

Meier-Augenstein and Schimmelmann (2019) *Isotopes in Environmental and Health Studies*. Electronic preprint: https://doi.org/10.1080/10256016.2018.1538137

Received: 4 May 2011

Revised: 7 June 2011

Accepted: 8 June 2011

Published online in Wiley Online Library

Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560 (wileyonlinelibrary.com) DOI: 10.1002/rcm.5129

Guidelines and recommended terms for expression of stableisotope-ratio and gas-ratio measurement results^{+, ‡}

Tyler B. Coplen*

U.S. Geological Survey, 431 National Center, Reston, VA 20192, USA

To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented. Published in 2011 by John Wiley & Sons, Ltd.

Use spaces between numbers and all units, including % and permil:

$$m = 6.4 \text{ kg} \qquad \delta^2 H_{\text{VSMOW}-\text{SLAP}} = +16.4 \%$$

$$t = 14 \text{ °C} \qquad x(^{13}\text{C}) = 1.11 \%$$

$$\delta^{18} O = \left[\frac{({}^{18} O / {}^{16} O)_{\rm P}}{({}^{18} O / {}^{16} O)_{\rm std}} - 1 \right] \cdot 1000$$

The factor 1000 is an extraneous numerical factor and should be deleted from the former equation above.

All quantity symbols are printed in italic font and their superscripts and subscripts are printed in Roman upright font,^[4,5] e.g. $\Delta_{P/Q}$, α , x_{P} , ε^{13} C, and $\delta^{44/42}$ Ca_{standard}, unless superscripts or subscripts are symbols of quantities, in which case they are printed in italic font, e.g. ^{*i*}E.

Freely available: https://doi.org/10.1002/rcm.5129

A simple SI rule states that there must be spaces between all numbers and the following SI units, including the dimensionless percent symbol (and by extension, the permil symbol). Please see the latest **SI-Brochure #9** on page 151 where the unambiguous rule is explained for %: The internationally recognized symbol % (percent) may be used with the SI. When it is used, a space separates the number and the symbol %.

The brochure is freely available here: https://urldefense.proofpoint.com/v2/url?u=https-3A www.bipm.org documents 20126 41483022 SI-2DBrochure-2D9-2DEN.pdf 2d2b50bf-2Df2b4-2D9661-2Df402-2D5f9d66e4b507&d=DwIGaQ&c=KveGjKEXiH4bMFgGs-LRbCbewnnyGW6rJ0JK7ViA E&r=LfV9LhyNAwLq7UZszWVAqQ0Ny4QshFsxAB M0J5TqxuE&m=6HyQ6xKc5VryKI5HD4NayImvRWzw4PRmZ tNnPmaOPjj1g5Rw2MfovaNIC3u5tcB-&s=fEzIsBFLm3QSTx4YxkH EWpF75ajZA3 Hh Ko2dyQDA&

IUPAC Technical Report

Grzegorz Skrzypek*, Colin E. Allison, John K. Böhlke, Luana Bontempo, Paul Brewer, Federica Camin, James F. Carter, Michelle M. G. Chartrand, Tyler B. Coplen, Manfred Gröning, Jean-François Hélie, Germain Esquivel-Hernández, Rebecca A. Kraft, Dana A. Magdas, Jacqueline L. Mann, Juris Meija, Harro A. J. Meijer, Heiko Moossen, Nives Ogrinc, Matteo Perini, Antonio Possolo, Karyne M. Rogers, Arndt Schimmelmann, Aldo Shemesh, David X. Soto, Freddy Thomas, Robert Wielgosz, Michael R. Winchester, Zhao Yan and Philip J. H. Dunn*

Minimum requirements for publishing hydrogen, carbon, nitrogen, oxygen and sulfur stable-isotope delta results (IUPAC Technical Report)

Freely available: https://doi.org/10.151 5/pac-2021-1108

https://doi.org/10.1515/pac-2021-1108 Received November 24, 2021; accepted October 20, 2022

Abstract: Stable hydrogen, carbon, nitrogen, oxygen and sulfur (HCNOS) isotope compositions expressed as isotope-delta values are typically reported relative to international standards such as Vienna Standard Mean Ocean Water (VSMOW), Vienna Peedee belemnite (VPDB) or Vienna Cañon Diablo Troilite (VCDT). These international standards are chosen by convention and the calibration methods used to realise them in practice undergo occasional changes. To ensure longevity and reusability of published data, a comprehensive description of (1) analytical procedure, (2) traceability, (3) data processing, and (4) uncertainty evaluation is required. Following earlier International Union of Pure and Applied Chemistry documents on terminology and notations, this paper proposes minimum requirements for publishing HCNOS stable-isotope delta results. Each of the requirements are presented with illustrative examples.

1.2 Metrological traceability

Isotope-delta values for hydrogen, carbon, nitrogen, oxygen and sulfur are traceable to international standards [1, 19]. Traceability of isotope-delta values is assured by calibration of measurement results using RMs that are traceable to the international standards (a process often referred to as normalisation). Publications must list the identity of the RMs used to normalise the isotope delta results, as well as the values and uncertainties assigned to these RMs. The identity of the international standard (e.g., material with isotopedelta equal to zero) should also be stated.

1.3 Data processing

Publications should disclose how stable-isotope measurement results were normalised [7] by either providing the measurement model equation or describing the basic principles used (e.g., linear ordinary least squares regression, quadratic errors-in-variables regression or other). All other corrections applied to instrumental readings should also be stated. These include corrections for the blank, memory effects, drift, linearity/mass effects, isobaric and other interferences. Results of analyses of samples with exchangeable hydrogen or oxygen, should be accompanied by details on water equilibration with non-exchangeable RMs or comparative equilibration with matrix matched RMs [21–23].

1.4 Uncertainty evaluation

Each reported isotope-delta value needs to be accompanied by a standard uncertainty or expanded uncertainty with coverage factor and coverage probability. The procedure used to evaluate the uncertainty should be described explicitly or by citation of previous research. Simple uncertainty evaluations can be obtained from the standard deviation of a stated number of analyses of each RM, sample, or a matrix-matched QC material.

For example: The uncertainty of the reported isotope-delta values was evaluated as the standard deviation of the mean of repeated (n = 4) measurements of each material within a single group of analyses.

THANK YOU FOR YOUR ATTENTION

Email questions to: arndtschimme@gmail.com