

STABLE ISOTOPES

Doris Potočnik, Lidija Strojnik, Nives Ogrinc Jožef Stefan Institute

TUNTWIN Summer School, April 18-20, 2023

Isotopes

atoms of the element with the same number of protons but different numbers of neutrons

https://www.javatpoint.com/isotopes-and-isobars

¹³CARBON HAS ONE MORE NEUTRON THAN ¹² CARBON IN ITS NUCLEUS.

One neutron is important!

Source of picture: Fry,2006, Stable Isotope Ecology

SOMETIMES THE EXTRA NEUTRON MAKES A DIFFERENCE. IT'S HARDER TO PUSH THE HEAVY MOLECULES UP AN ENERGY HILL....

...SO THAT PRODUCTS HAVE MORE OF THE LIGHT ISOTOPE AND LESS OF THE HEAVY ISOTOPE.

Reactivity of isotope and their compounds

Chemical behavior of isotope is qualitatively SIMILAR.

Physical behavior of isotope is qualitatively DIFFERENT.

6 Neutrons

Higher vibrational energy

Higher velocity

Higher reaction rate

compared to 13C

● 6 Protons ● 7 Neutrons

Isotopes of common interest for environmental implications

^{2}H ^{13}C ^{15}N ^{18}O ^{34}S

Isotopes of the most abundant elements

H, C, N, O, S

© () (S) 2023 Strojnik

Variations in isotopic abundances

Element	Minor Isotope	Natural Abundance [%]
н	2H	0.01557
С	13 C	1.11140
Ν	15 N	0.366 <mark>30</mark>
0	180	0.204 <mark>04</mark>
S	³⁴ S	4.215 <mark>00</mark>

Variations in many natural systems occur in the third to fifth decimal place.

Variations in isotopic composition

Element	Minor Isotope	Terrestrial range [‰]		
Н	2H	$\delta^2 H = -450 \text{ to } +50$	Hydrogen has a large terrestrial range, but also	
С	13 C	δ^{13} C = -120 to +10	relatively low precision.	
Ν	15 N	δ^{15} N = -20 to +30	Nitrogen has a smaller	
0	180	$\delta^{18}O = -50 \text{ to } +40$	terrestrial range, but better technical precision	
S	³⁴ S	$\delta^{34}S = -65 \text{ to } +90$	•	

Isotope analysis

Element	Minor Isotope	Analyzed as	
н	2 H	H ₂	We analyse gases that
С	13 C	CO_2	contain the isotones
Ν	15 N	N ₂	of interest
0	180	CO _{2,} (CO)	or interest!
S	³⁴ S	SO ₂ (SF6)	

Isotope Ratio Mass Spectrometer

Adapted from Prdaeep Raja K.P.

Continuous Flow

Isotope Ratio Mass Spectrometer

On-line sample preparation

Smaller sample size

Faster and simpler analysis

Cost effective

Dual Inlet

Isotope Ratio Mass Spectrometer

The most precise method

Continuous Flow IRMS

Can be interfaced with other preparation techniques

Elemental analyser (EA)

Gas chromatography (GC)

Liquid chromatography (LC)

From bulk to compound specific

... the isotope ratio of the HEAVY / LIGHT isotopes in either your sample or a standard

... ²H/¹H, ¹³C/¹²C, ¹⁵N/¹⁴N, ¹⁸O/¹⁶O, ³⁴S/³²S

... a very small number

This is a small number, because R_{sample} never deviates much from $R_{standard}$ (natural variation in isotope ratios is limited).

This is a small number, because R_{sample} never deviates much from $R_{standard}$ (natural variation in isotope ratios is limited).

To make the variation more apparent, one multiplies the value by 1000 Thereby expressing the value in per mil (parts per thousand; ‰ notation).

Delta notation indicates the isotope ratio in your sample relative to a known standard, defined as 0 ‰ (mUr – SI unit).

$$\boldsymbol{\delta}^{i} \mathbf{E} = \begin{bmatrix} \frac{R_{sample}}{R_{standard}} - 1 \end{bmatrix} \mathbf{x} \ \mathbf{1000} \ [\%_{o}]$$

If the isotope ratio in your sample equals the standard, $R_{sample}/R_{standard} = 1$ and $\delta^{i}E = 0$ ‰.

Element Reference standard

Ν

 \mathbf{O}

S

- H Vienna Standard Mean Ocean Water (V-SMOW)
- **C** Vienna Pee Dee Belemnite (V-PDB)
 - Atmospheric N₂ (AIR)
 - Vienna Standard Mean Ocean Water (V-SMOW)

Vienna-Canyon Diablo Troilite (V-CDT)

$$\boldsymbol{\delta}^{i} \mathbf{E} = \begin{bmatrix} \frac{R_{sample}}{R_{standard}} - 1 \end{bmatrix} \mathbf{x} \ \mathbf{1000} \ [\%]$$

A positive δ value means that the ratio of heavy to light isotope is higher in the sample than in the standard.

A negative δ value means that the ratio of heavy to light isotope is lower in the sample than in the standard.

$$\boldsymbol{\delta}^{i} \mathbf{E} = \begin{bmatrix} \frac{R_{sample}}{R_{standard}} - 1 \end{bmatrix} \mathbf{x} \ \mathbf{1000} \ [\%]$$

A positive δ value means that the ratio of heavy to light isotope is higher in the sample than in the standard.

A negative δ value means that the ratio of heavy to light isotope is lower in the sample than in the standard.

A sample with a δ^{18} O value of +19.7 ‰ has an ¹⁸O/¹⁶O ratio that is 19.7 per mil, or 1.97 percent higher than in the standard.

Comparative terms

LIGHT vs HEAVY SAMPLES

LIGHTER sample contains more of the lighter isotope, relative to another sample. **HEAVIER** sample contains more of the heavier isotope, relative to another sample.

DEPLETED vs ENRICHED SAMPLES

A sample "DEPLETED" IN THE LIGHT ISOTOPE contains less of the light isotope, and more of the heavy isotope, relative to another sample.

A sample "ENRICHED" IN THE LIGHT ISOTOPE contains more of the light isotope, and less of the heavy isotope, relative to another sample.

Example

 $\delta^{15}N(\%)$ More <u>negative</u>
Isotopically <u>lighter</u>
Depleted in ¹⁵N 0More <u>positive</u>
Isotopically <u>heavier</u>
Enriched in ¹⁵N 0Sample A
Sample B

 $\delta^{15}N = -3.00 \%$

 $\delta^{15}N = +3.00\%$

Sample B is more positive / enriched in ¹⁵N / heavier compared to /relative to Sample A

δ¹³C composition

δ¹³C value; carbon isotope composition

 δ^{13} C values are numbers; a composition of numbers has no meaning

Isotopically depleted water

¹⁸O depleted water

A given sample of water is neither depleted nor enriched in isotopes

Heavy (light) δ^{18} O values

High (low) δ^{18} O values

As numbers, δ values can be high or low, positive or negative, but not heavy or light.

Isotopically negative

Relatively low δ values

Isotopic ratios are neither negative or positive; they are lower or higher than those of the standards.

Depleted δ^{13} **C** value

Low δ^{13} C value (relative to another)

 δ^{13} C values are numbers; as such, they cannot be depleted or enriched.

IRMS challenges

IRMS challenges

B Instrument preparation

Instrument preparation

2 Electrical supply

Vacuum system checks leak checking, backgrounds

working gas stability & linearity

Ion source tuning

A poorly focused ion beam gives a divergent image at the detector.

Any small change in the energy of the ion beam would result in a change in amplitude of the ion beam.

Isotopic ratio of the beam varying drastically because of instrument inefficiency.

Ion source tuning

Ion source must be well tuned in order to produced reliable isotope data

Starting with the default tuning parameters

Optimise the Half Plates and Z Plates for steering the focus

Repeat the sequence above until the ion beam currents change only by small amounts
Peak centering

Good peak centre allow well focussed instrument and stable isotope ratios. Peak centre scans should produce a symmetrical and flat peak across the top.

Ion Source Performance: BAD

Adapted from Rees, 2021

Adapted from Rees, 2021

Base performance

After vacuum, tuning and peak center is OK.

Checks the quality of the IRMS prior to analysing samples.

Performed by injecting pure working gas into the ion source.

Two major checks:

- Stability
- Linearity

Base performance: Stability

Determines the best reproducibility that can be achieved.

Repeat injection of working gas at the same pressure to check that the instrument returns the same ratio.

Monitor on a daily basis

Adapted from FIRMS

For CO₂, N₂ and CO < 0.1‰, \leq 1‰ for H₂

Base performance: Linearity

Attain consistent ion ratios over a range of signal intensities

Performed with the intensity of the gas pulses encompassing the anticipated working range of sample heights.

Monitor before each sample batch.

Can also be determined from samples.

For CO₂, N₂ and CO \leq 0.03‰ / nA, \leq 0.1 for H₂

Most affected by the relationship between the extraction voltage (EX) and ion repeller (IR) .

B Reference materials

The use of relevant reference material following principle of "identical treatment".

Why stable isotope RM?

All stable isotope laboratories must be able to measure the same sample and obtain the same δ -value within analytical uncertainty.

Measured isotopic data with high precision but low accuracy need to be normalized.

Hierarchy of RM

PRIMARY RM

SECONDARY RM

LOWER LEVEL RM

Hierarchy of RM: Primary

Physical materials which define the international δ -scale. Exact isotope δ values by consensus with no uncertainty

Limited supply - purchase every 3 years

Impractical for day-to-day use.

Hierarchy of RM: Primary

Most primary RMs are inorganic compounds or materials and cannot be directly comparable to the analysis of organic compounds.

Hierarchy of RM: Secondary

Natural or synthetic compounds that have been carefully calibrated relative to the primary RMs. by IAEA, USGS, IRMM...

Hierarchy of RM: Secondary

Physical materials with internationally agreed δ -values and uncertainty.

Limited range of materials and δ -values.

Hierarchy of RM: Lower level

Materials calibrated against primary and/or secondary RMs.

Used on a daily basis for QA and QC.

Chemically and physically similar to typical laboratory samples.

B Data normalisation

To ensure laboratory comparability measured data must be normalized to the appropriate international δ -scale.

Common normalisation methods

Single-point normalisation:

referencing versus the working gas (WG) referencing versus a certified RM

1

Multiple-point linear normalisation

Single - point normalisation

Referencing versus the working gas (WG)

Single - point normalisation

Referencing versus the reference material (RM)

RM and the unknown sample are analysed using the principle of identical treatment.

Acceptable where is a lack of RM and $\delta_{Sample} \sim \delta_{RM}$

$$\delta_{T(Spl)} = \left[\frac{(\delta_{raw(Spl)} + 1000)(\delta_{true(RM)} + 1000)}{(\delta_{raw(RM)} + 1000)}\right] - 1000$$

2-point normalisation

Using two RMs with contrasting isotopic compositions are needed for accurate isotopic measurements.

Suitable RMs should ideally be available as pairs.

Multiple-point isotopic linear normalisation

Reduce the random error associated with the analysis of a reference material used to anchor the linear scale.

A Measurement uncertainty

Measurement uncertainty

All measurements are affected by a certain error.

The measurement uncertainty tells us what size the measurement error might be.

The laboratory to verifiy its' own quality of measurement.

Customer needs it in order to be able to make correct decisions.

Required for accreditation to ISO 17025.

Where uncertainty arise in IRMS?

From all calculation stages from raw instrumental data onwards.

Corrections to data can significantly impact the source and magnitude.

Kragten spreadsheet approach

One of the most straightforward approaches with two-point scale calibration/normalization

Example provided in current FIRMS Good Practice Guide for IRMS:

	А	В	С	D	E	F	G	н
1								
2	Parameter	value (<i>8</i> ²H, ‰)	uncertainty (<i>&</i> °H, ‰)					
3	$\delta_{ ext{true}(ext{VSMOW2})}$	0.0	0.3	B3+C3	B3	B3	B3	B3
4	$\delta_{ ext{true(SLAP2)}}$	-427.5	0.3	B4	B4+C4	B4	B4	B4
5	$\delta_{raw(VSMOW2)}$	0.3	1.2	B5	B5	B5+C5	B5	B5
6	$\delta_{ m raw(SLAP2)}$	-420.7	1.2	B6	B6	B6	B6+C6	B6
7	$\delta_{ m raw(sample)}$	-189.0	1.5	B7	B7	B7	B7	B7+C7
8	$\delta_{ m true(sample)}$	Eqn. (13) applied to values above	u(δ _{rue(sample)}) = square root of sum of squared differences	Eqn. (13) applied to values above				
9			Difference	D8-B8	E8-B8	F8-B8	G8-B8	H8-B8
			Squared differences	(D9) ²	(E9) ²	(F9) ²	(G9) ²	(H9) ²

Estimation of MU from validation

KM-1 (VINO)

Measurement uncertainty within laboratory reproducibility ($u(R_w)$)

internal QC material

Measure uncertainty from laboratory bias (*u*(*bias*))

proficiency testing (PT) (FIT-PTS, CCQM, FIRMS-PTS, IAEA)

$$u_c = \sqrt{u(R_W)^2 + (u(bias))^2}$$

Estimation of MU from validation

CCQM: key comparison on stable isotope ratio delta values

The uncertainty budget: the uncertainty of the calibration curve

uncertainty of the used RM

the uncertainty of the sample material (repeatability)

enrichment of one isotope relative to another in a chemical or physical process.

Sample preparation procedures

are of the utmost importance because errors that occur cannot be corrected subsequently.

Instrumental conditions

May also cause irreproducible isotope fractionation.

Recommendations for isotope community

Metrological traceability

use of RM (names, their values and associated uncertainties)

Data handling

how the measurement results were normalized to a stable isotope scale

Uncertainty evaluation

an associated uncertainty at a stated confidence level

Isotope fractionation details on sample

details on sample preparation protocol and analytical conditions

EA-IRMS

©2023 Potocnil

Doris Potočnik Jožef Stefan Institute

TUNTWIN Summer School, April 18-20, 2023

Elemental analyser (EA) - IRMS

- Combination of an inlet (EA) coupled to an IRMS.
- Provide analysis of "bulk" or singlecomponent material (required high purity and homogeneity of the sample).

Elemental analyser (EA): inlet

Liquid autosampler

for volatile liquid compounds (EtOH, VOC)

Solid autosampler (EA) for CNS and OH analysis

Gas autosampler

for O and H analysis in water samples from foodstuff, C in DIC, O and C in carbonates

EA components

Autosampler – introduce the sample into the EA

Heated furnace – combustion and reduction tube or pyrolysis furnace tube

Water trap - contains desiccant

GC oven – separation of combustion gases

TCD detector for produced gases

EA-IRMS combustion mode

δ^{13} C, δ^{15} N, δ^{34} S via EA-IRMS

Routinely used for CNS analysis

Two-reactor system: a "combustion" reactor, followed by a "reduction reactor.

Combustion takes place in an O_2 atmosphere in a quartz reactor to produce CO_2 , NO_x , SO_x and H_2O (T = 900-1050°C)

EA-IRMS combustion mode

δ^{13} C, δ^{15} N, δ^{34} S via EA-IRMS

Removal of excess O_2 and reduction of the NOx to N_2 or SOx to SO_2 takes place in a reduction reactor.

Reduction reactor packed with high-purity copper.

The "water trap" contains magnesium perchlorate or phosphorus pentoxide.

EA-IRMS pyrolysis mode

δ^2 H, δ^{18} O via TC/EA-IRMS

High-temperature conversion between 1350 and 1450 °C

Single reactor – partially packed with glassy carbon and silver wool to bind the halogen atoms

Organic and inorganic compounds are converted to $H_{2,}$ CO

Sample diluter

The concentration of a particular element in our sample is too large for the IRMS measurements.

The high amount of sample can damage the ion source and contaminate the IRMS.

High amount lead to inaccurate results sample peak outside of the linear range

In food samples, large amounts of CO_2 and small amounts of N_2 or SO_2 are presented!

B Sample preparation

Sample preparation for EA-IRMS

Plants' material

contains protein, lipids, tissue water & sugars

Honey

contains proteins, sugars & waters

Meat contains proteins, lipids, and tissue water

Sample preparation for EA-IRMS

Required **high purity of the samples** (lipids, protein, water,...) since the **whole sample is introduced to the autosampler** (a mixture of components can lead to inaccurate measurements).

Required high homogeneity of the sample (nonhomogeneous sample lead to inaccurate measurements).

Pre-treatment: drying

Depends on the type of the sample

meat, milk, plants, honey, sediments, bones, ...

The water fraction needs to be removed to ensure a dry sample oven or freeze-dryer

Pre-treatment: homogenisation

Depends on the type of the sample

meat, milk, plants, honey, sediments, bones, ...

Samples must be turned into a homogenous fine powder pestle and mortal, ceramic/stainless blade mill

Pre-treatment: extraction

Depends on the type of the sample

meat, milk, plants, honey, sediments, bones,

Extraction of lipids fraction can be achieved with different solvent Soxhlet extraction, extraction & homogenisation with Ultra-Turrax devices

Sample preparation: weighing

The sample can be weighted using a spatula into tin or silver capsules

CNS analysis – tin capsules

burns easily and has a lower melting point

OH analysis – silver capsules lower oxygen content

Sample preparation: weighing

The weight of the sample should be selected so that the resulting signal intensities are within the linear range of mass spectrometer and EA.

Capsules are sealed and stored recommended 96 well plate

Sample preparation: liquid samples

Liquid samples

vegetable oils, juice, water solution, EtOH

Pipette into capsules oven 40 °C during the night

Pipette into tin capsules with chromosorbe

Sample preparation: hydrogen

Organic materials with hydroxyl group will **exchange hydrogen** atoms with atmospheric moisture resulting in incorrect δ^2 H values

Samples and RM are equilibrated simultaneously with regard to atmospheric moisture

left unsealed in a well plate in a vacuum desiccator

B Instrument preparation

For reliable functioning of EA

Replacing the oxidation and reduction column

Replacing the ash collector

Cleaning (baking) GC column

On daily basis...

Gas Species	Stability Levels
CO ₂	\leq 0.08‰ 1 σ on 10 pulses over 3 consecutive runs
N_2	\leq 0.08‰ 1 σ on 10 pulses over 3 consecutive runs
H ₂	\leq 0.2 ‰ 1 σ on 10 pulses over 3 consecutive runs

Stability

Gas Species	Linearity
CO ₂	≤ 0.03 ‰/nA
N ₂	≤ 0.03 ‰/nA
СО	≤ 0.03 ‰/nA
SO_2	≤ 0.05 ‰/nA
N ₂ O	≤ 0.03 ‰/nA
H ₂	≤ 0.1 ‰/nA

When needed...

Tune of the instrument

Source Parameter	CO2	N ₂	со	SO2	N ₂ O	H ₂	
Accelerating Voltage (V)	≈ 3500	≈ 3700	≈ 3700	≈ 2800	≈ 3500	≈ 4800	
Extraction Voltage	≤ 75 %	≤ 75 %	≤ 75 %	≤ 75 %	≤ 75 %	≈ 75 %	
Half Plate Differential (V)	Tuned for maximum sensitivity						
Z Plate Voltage (V)	Tuned for maximum sensitivity						
Electron Volts (eV)	70 to 100	95 to 100	95 to 100	95 to 100	95 to 100	95 to 100	
Ion repeller Voltage (V)	-2 to -10	-2 to -10	-2 to -10	-2 to -10	-2 to -10	≈ +45	
Trap Current* (μΑ)	200-800	200-400	200-600	400-600	≤ 400	400-800	

Must be in required ranges

B Standard Selection

Several international distributors

USGS, IAEA, NIST, IRMM,...

FOR ENVIRONMENT AND TRADE						About Us Links News Customer Info		
Home Reference	Materials Analytic	al Methods	Publications	Interlaboratory Studies	Events	ALMERA		
Home > Reference Products	Reference Material Onl	ine Catalog 📏 St	able Isotopes					
Reference Products About IAEA Reference Materials	Materials o	characte	erized for	Stable Isotopes		r T	₩ My Shopping C	;art €0
Reference Material Online Catalog	² H and ¹⁸ O in water samples Materials with known ² H ¹³ C ¹⁵ N and ¹⁸ O isotopic composition							ing Cart
Radionuclides	Materials with known	Materials with known ¹³ C. ¹⁸ O and ⁷ Li isotopic composition						
Trace Elements & Methyl Mercury	Materials with known ¹⁵ N/ ¹⁴ N isotopic composition Materials with known ³⁴ S/ ³² S isotopic composition						Edit My Profile View My Orders	
Organic Contaminants	Materials with known ¹¹ B/ ¹⁰ B isotopic composition Help and Service Materials with known ³⁷ Cl/ ³⁵ Cl isotopic composition Terms of Service							
Stable Isotopes								
Ordering Information							Contact Us	
Miscellaneous Documents								
How to contact us								

Reference Materials and Calibration Services

ID #	Description of Material	Amount	Price	Comment	Report of Isotopic Composition
USGS24	graphite	0.8 g	\$158	δ^{13} C = -16.05 ‰	USGS24
USGS25	ammonium sulfate	> 0.6 g	\$297	δ^{15} N = -30.41 ‰	USGS25
USGS26	ammonium sulfate	> 0.8 g	\$297	δ ¹⁵ N = +53.75 ‰	USGS26
USGS32	potassium nitrate	0.8 g	\$344	δ^{15} N = +180 ‰ δ^{18} O = ~+25.5 ‰	USGS32
USGS34	potassium nitrate	0.85 g	\$344	δ^{15} N = -1.8 ‰ δ^{18} O = ~-28 ‰	USGS34
USGS35	sodium nitrate	0.6 g	\$344	$\delta^{15}N = +2.7 \%$ $\delta^{18}O = -+57 \%$	USGS35
USGS37	potassium perchlorate	1 g	\$600	$\begin{split} &\delta^{37} \text{Cl} = +0.90 \ \% \\ &\delta^{18} \text{O} = -17.00 \ \% \\ &\delta^{17} \text{O} = -8.96 \ \% \end{split}$	USGS37
USGS38	potassium perchlorate	1 g	\$600	$\begin{split} &\delta^{37} \text{Cl} = -87.90 \% \\ &\delta^{18} \text{O} = +52.50 \% \\ &\delta^{17} \text{O} = +102.40 \% \end{split}$	<u>USGS38</u>
USGS39	potassium perchlorate	1 g	\$600	$\begin{split} &\delta^{37} \text{Cl} = +0.05 \ \% \\ &\delta^{18} \text{O} = +122.34 \ \% \\ &\delta^{17} \text{O} = +62.61 \ \% \end{split}$	USGS39
USGS40	L-glutamic acid	2 g	\$200	δ^{15} N = -4.52 ‰ δ^{13} C = -26.39 ‰	USGS40
USGS41a	L-glutamic acid enriched in $^{13}\text{C} \ \ensuremath{\mathbb{E}}^{15}\text{N}$	0.5 g	\$150	δ^{15} N = +47.55 ‰ δ^{13} C = +36.55 ‰	USGS41a

Inconsistent isotopic data

Reference ID	Chemical name	Structure or composition of material	Ring-test refe standard $\delta^2 H_{VSMOW-SLAP}$	Prence values with uncertainties (m $\delta^{13}C_{VPDB-LSVEC}$	th combined Ur or ‰) δ ¹⁵ Ν _{Air}
USGS61	caffeine	CH3	+96.9 ± 0.9	-35.05 ± 0.04	-2.87 ± 0.04
USGS62	caffeine	N N P	-156.1 ± 2.1	-14.79 ± 0.04	+20.17 ± 0.06
USGS63	caffeine	N CH3	+174.5 ± 0.9	-1.17 ± 0.04	+37.83 ± 0.06
IAEA-600*	caffeine	H ₃ C 0	-156.1 ± 1.3	-27.73 ± 0.04	+1.02 ± 0.05
USGS64	glycine	0	no values	-40.81 ± 0.04	+1.76 ± 0.06
USGS65	glycine		the presence of	-20.29 ± 0.04	+20.68 ± 0.06
USGS66	glycine	ОН	exchangeable hydrogen	-0.67 ± 0.04	+40.83 ± 0.06
USGS67	n-hexadecane		-166.2 ± 1.0	-34.50 ± 0.05	n.a.
USGS68	n-hexadecane	C ₁₆ H ₃₄	-10.2 ± 0.9	-10.55 ± 0.04	n.a.
USGS69	n-hexadecane		+381.4 ± 3.5	-0.57 ± 0.04	n.a.
USGS70	icosanoic acid methyl ester (C ₂₀ FAME)		-183.9 ± 1.4	-30.53 ± 0.04	n.a.
USGS71	icosanoic acid methyl ester (C ₂₀ FAME)	C ₂₀ H ₃₉ OOCH ₃	-4.9 ± 1.0	-10.50 ± 0.03	n.a.
USGS72	icosanoic acid methyl ester (C ₂₀ FAME)		+348.3 ± 1.5	-1.54 ± 0.03	n.a.
USGS73	L-valine		no values	-24.03 ± 0.04	-5.21 ± 0.05
USGS74	L-valine	ну он	the presence of	-9.30 ± 0.04	+30.19 ± 0.07
USGS75	L-valine	H ₂ N J	exchangeable hydrogen	+0.49 ± 0.07	+61.53 ± 0.14
USGS76	methylheptadecanoate (C ₁₇ FAME)	C ₁₇ H ₃₃ OOCH ₃	-210.8 ± 0.9	-31.36 ± 0.04	n.a.
IAEA-CH-7*	polyethylene foil	(C ₂ H ₄) _n	-99.2 ± 1.2	-32.14 ± 0.05	n.a.
USGS77	polyethylene powder (also extruded string)	(C ₂ H ₄) _n	-75.9 ± 0.6	-30.71 ± 0.04	n.a.
NBS 22*	oil	n.a.	-117.2 ± 0.6	-30.02 ± 0.04	n.a.
NBS 22a	vacuum oil, regular	n.a.	-120.4 ± 1.0	-29.72 ± 0.04	n.a.
USGS78	vacuum oil, ² H- enriched	n.a.	+397.0 ± 2.2	-29.72 ± 0.04	n.a.

Define new values of pre-existing RMs (Schimmellman et al., 2016)

caffeine & polyethylene foil

http://dx.doi.org/10.1021/acs.analchem.5b04392

Inconsistent isotopic data

Reference ID	Chemical name	Structure or composition of material d ² Hysmowstage d ¹³ Cyppet sysc		th combined Ur or ‰) δ ¹⁵ Νair	
USGS61	caffeine	CH ₃	+96.9 ± 0.9	-35.05 ± 0.04	-2.87 ± 0.04
USGS62	caffeine	NNN	-156.1 ± 2.1	-14.79 ± 0.04	+20.17 ± 0.06
USGS63	caffeine	N CH3	+174.5 ± 0.9	-1.17 ± 0.04	+37.83 ± 0.06
IAEA-600*	caffeine		-156.1 ± 1.3	-27.73 ± 0.04	+1.02 ± 0.05
USGS64	glycine	0	no values	-40.81 ± 0.04	+1.76 ± 0.06
USGS65	glycine		the presence of	-20.29 ± 0.04	+20.68 ± 0.06
USGS66	glycine	ОН	exchangeable hydrogen	-0.67 ± 0.04	+40.83 ± 0.06
USGS67	n-hexadecane		-166.2 ± 1.0	-34.50 ± 0.05	n.a.
USGS68	n-hexadecane	C ₁₆ H ₃₄	-10.2 ± 0.9	-10.55 ± 0.04	n.a.
USGS69	n-hexadecane		+381.4 ± 3.5	-0.57 ± 0.04	n.a.
USGS70	icosanoic acid methyl ester (C ₂₀ FAME)		-183.9 ± 1.4	-30.53 ± 0.04	n.a.
USGS71	icosanoic acid methyl ester (C ₂₀ FAME)	C ₂₀ H ₃₉ OOCH ₃	-4.9 ± 1.0	-10.50 ± 0.03	n.a.
USGS72	icosanoic acid methyl ester (C ₂₀ FAME)		+348.3 ± 1.5	-1.54 ± 0.03	n.a.
USGS73	L-valine		no values	-24.03 ± 0.04	-5.21 ± 0.05
USGS74	L-valine	Он	the presence of	-9.30 ± 0.04	+30.19 ± 0.07
USGS75	L-valine		exchangeable hydrogen	+0.49 ± 0.07	+61.53 ± 0.14
USGS76	methylheptadecanoate (C ₁₇ FAME)	C ₁₇ H ₃₃ OOCH ₃	-210.8 ± 0.9	-31.36 ± 0.04	n.a.
IAEA-CH-7*	polyethylene foil	(C ₂ H ₄) _n	-99.2 ± 1.2	-32.14 ± 0.05	n.a.
USGS77	polyethylene powder (also extruded string)	(C ₂ H ₄) _n	-75.9 ± 0.6	-30.71 ± 0.04	n.a.
NBS 22*	oil	n.a.	-117.2 ± 0.6	-30.02 ± 0.04	n.a.
NBS 22a	vacuum oil, regular	n.a.	-120.4 ± 1.0	-29.72 ± 0.04	n.a.
USGS78	vacuum oil, ² H- enriched	n.a.	+397.0 ± 2.2	-29.72 ± 0.04	n.a.

Define new values of pre-existing RMs (Schimmellman et al., 2016)

caffeine & polyethylene foil

AL REFERENCE PRODUCTS FOR ENVIRONMENT AND TRADE							
Home Reference	Materials Ana	alytical Methods	Publications	Interlaborato	ory Studies	Nuclear Instrumer	
Home > Reference Products	> Reference Materia	I Online Catalog $ ight angle$ St	able Isotopes 〉 Mat	erials with known ² l	H, ¹³ C, ¹⁵ N and ¹	⁸ O isotopic compositior	
Materials with known ² H, ¹³ C, ¹⁵ N and ¹⁸ O isotopic composition	IAEA-60	0 , Caffein mown ² H, ¹³ C, ¹⁵ N	e and ¹⁸ O isotopic	composition			
NBS 22	○ Unit Siz	te: 0.5 a					
NBS 28	 Price p 	er Unit: 130 EUR					
NBS 30	 Date of 	 Date of Release: 					
USGS24	 Production 	ing Laboratory: ema	il				
000024	IAEA-600 was pr	epared by W. Brand	and R. Werner, Ma	ax-Planck-Institut	e for Biogeoche	mistry, Jena,	
USGS40	USGS40 USGS41 USGS41 USGS41 USGS41 USGS41						
IAEA-600	and therefore is	only an information v	alue.		i determined in	one laboratory only	
IAEA-601		,					
IAEA-602	Analyte	Value	Unit		SD	R/I/C	
IAFA-CH-3	δ ¹³ C	-27.771	%VPD	В	0.043	С	
IAEA-CH-6	$\delta^{15}N$	+1.0	%air N	2	0.2	I	

http://dx.doi.org/10.1021/acs.analchem.5b04392

Inconsistent isotopic data

Reference ID	Chemical name	Structure or composition of material	Ring-test refe standard $\delta^2 H_{VSMOW-SLAP}$	rence values wi uncertainties (m $\delta^{13}C_{VPDB-LSVEC}$	th combined Ur or ‰) δ ¹⁵ N _{Air}
USGS61	caffeine	CH3	+96.9 ± 0.9	-35.05 ± 0.04	-2.87 ± 0.04
USGS62	caffeine	N N P	-156.1 ± 2.1	-14.79 ± 0.04	+20.17 ± 0.06
USGS63	caffeine	N CH3	+174.5 ± 0.9	-1.17 ± 0.04	+37.83 ± 0.06
IAEA-600*	caffeine		-156.1 ± 1.3	-27.73 ± 0.04	+1.02 ± 0.05
USGS64	glycine	0	no values	-40.81 ± 0.04	+1.76 ± 0.06
USGS65	glycine	H-N	the presence of	-20.29 ± 0.04	+20.68 ± 0.06
USGS66	glycine	ОН	exchangeable hydrogen	-0.67 ± 0.04	+40.83 ± 0.06
USGS67	n-hexadecane		-166.2 ± 1.0	-34.50 ± 0.05	n.a.
USGS68	n-hexadecane	C ₁₆ H ₃₄	-10.2 ± 0.9	-10.55 ± 0.04	n.a.
USGS69	n-hexadecane		+381.4 ± 3.5	-0.57 ± 0.04	n.a.
USGS70	icosanoic acid methyl ester (C ₂₀ FAME)		-183.9 ± 1.4	-30.53 ± 0.04	n.a.
USGS71	icosanoic acid methyl ester (C ₂₀ FAME)	C ₂₀ H ₃₉ OOCH ₃	-4.9 ± 1.0	-10.50 ± 0.03	n.a.
USGS72	icosanoic acid methyl ester (C ₂₀ FAME)		+348.3 ± 1.5	-1.54 ± 0.03	n.a.
USGS73	L-valine		no values	-24.03 ± 0.04	-5.21 ± 0.05
USGS74	L-valine	н он	the presence of	-9.30 ± 0.04	+30.19 ± 0.07
USGS75	L-valine	H ₂ N I O	exchangeable hydrogen	+0.49 ± 0.07	+61.53 ± 0.14
USGS76	methylheptadecanoate (C ₁₇ FAME)	C ₁₇ H ₃₃ OOCH ₃	-210.8 ± 0.9	-31.36 ± 0.04	n.a.
AEA-CH-7*	polyethylene foil	(C ₂ H ₄) _n	-99.2 ± 1.2	-32.14 ± 0.05	n.a.
USGS77	polyethylene powder (also extruded string)	(C ₂ H ₄) _n	-75.9 ± 0.6	-30.71 ± 0.04	n.a.
NBS 22*	oil	n.a.	-117.2 ± 0.6	-30.02 ± 0.04	n.a.
NBS 22a	vacuum oil, regular	n.a.	-120.4 ± 1.0	-29.72 ± 0.04	n.a.
USGS78	vacuum oil, ² H- enriched	n.a.	+397.0 ± 2.2	-29.72 ± 0.04	n.a.

Define new values of pre-existing RMs (Schimmelmann et al., 2016) caffeine & polyethylene foil

You need to explain which RMs were used and which δ values were assigned to each RM.

Standard selection

USGS88 δ^{13} C = -16.06 ± 0.14 ‰ collagen

IAEA-600 δ^{13} C = -27.71 ± 0.04 ‰ caffeine

USGS62 δ^{13} C = -14.79 ± 0.04 ‰ caffeine

The chemical nature of the sample should be identical to that of the reference material.

BCR-656 δ^{13} C = -26.91 ± 0.07 ‰ ethanol

USGS91 δ^{13} C = -28.28 ± 0.08 ‰ rice flour

IAEA-CH-3 δ^{13} C = -24.72 ± 0.04 ‰ cellulose

IAEA-CH-6 δ^{13} C = -10.45 ± 0.03 ‰ sucrose

At least 2 isotopic RMs with contrasting isotopic compositions.

RMs should bracket the δ value that you expect from your unknown sample.

B Sequence preparation

Data processing – batch design

Position	Sample name
1	Dummy
2	Dummy
3	Dummy
4	Dummy
5	RM-1
6	RM-1
7	RM-2
8	RM-2
9	QC
10	QC
11	Sample 1
12	Sample 1
13	Sample 2
14	Sample 2
:	:
:	:
48	Sample 19
49	Sample 19
50	QC
51	QC
52	RM-2
53	RM-2
54	RM-1
55	RM-1

Blanks and dummy

at the beginning for condition purposes

RM for data normalisation

at least 2 different RMs at the beginning and at the end of the sequences

QC material

analysed periodically throughout the sequences

Data processing – drift correction

During an analytical sequence measured δ values can change:

because of the changes in the isotopic composition of WG

subtle changes within the ion source

The degree of drift should be determined by:

analysis of QC or RMs at the beginning and at the end of the sequences

Data processing – drift correction

How calculated a drift correction?

$$\delta_{drift\,corr} = \delta_{meas} - m \times position$$

 $\delta_{\text{drift corr}}$ drift corrected δ value of the sample

 δ_{meas} determined (raw) δ value of the sample

m slope of linear drift curve (plot of δ value versus autosampler position)

position autosampler position within the sequences (assuming this is proxy of time)

Data processing – normalisation

The true δ values when using **2 or more RMs** can be calculated using the following equation

 $\delta_{true\,(Spl)} = m \times \delta_{raw\,(Spl)} + b$

m – the slope of the regression line ("expansion factor")

b – the intercept ("shift factor")

Raw (measured) δ value

Recommendations for isotope community

High purity and homogeneity of the sample is required.

Correct selection and use of RMs.

Signal intensities of samples and RMs are within the linear range.

Appropriate data normalisation provide reproducible and accurate results.

GC-IRMS

mminin

©2023 Strojnik

Lidija Strojnik Jožef Stefan Institute

TUNTWIN Summer School, April 18-20, 2023

CNOH isotope as tracer

CNOE isotope as tracer

Fiorentino et al., 2014: DOI 10.1007/s00334-014-0492-9

CNO isotope as tracer

Fiorentino et al., 2014: DOI 10.1007/s00334-014-0492-9

DOI: 10.1007/1-4020-4496-8_234

CNOD isotope as tracer

Fiorentino et al., 2014: DOI 10.1007/s00334-014-0492-9

https://www.wikiwand.com/en/Hydrogen_isotope_biogeochemistry#Media/File:DD_Various_Sources.jpg Creative Commons Attribution-Share Alike 4.0

Combination of two or more isotopes may help

Not working?

Metabolic pathways

Fatty acid metabolism

DOI: 10.3389/fmicb.2020.608662

Amino acid metabolism

VOCs biosynthesis

Figure adapted by Brian Larkins, DOI: 10.1104/pp.125.4.1766

Figure adapted by Jörg-Peter Schnitzler, DOI: 10.1002/9780470015902.a0000910.pub3

"Compound specific" GC-C/P-IRMS

When compound specific?

Complex materials or mixtures

Isotopic information accessible at the biochemical building-block

Linking molecular structure-stable isotope composition- source or process

At present, CSIA is the most specific and sophisticated method for determining food authenticity.

But...

To obtain precise isotope ratios of analytes in complex sample matrices:

Extensive method development

Optimal instrument conditions

Stability and linearity

Tuning the injection volume

Preventing carryover

Appropriate RM and data normalisation

Don't panic!

You will acquire new knowledge and skills

GC injector

The split / splitless injector

The injection port is where the liquid sample is injected, vaporised and transported onto the capillary column by the carrier gas.

It can be used in one of two modes: split or splitless.

GC column

Chromatographic separation is of key importance in GC-IRMS.

Minor co-elutions and peak telling significantly influence on the correctness of delta value of a given compound.

GC column

Typically have lengths from 20 to 60 m, internal diameters from 0.200 to 0.320 $\mu m.$

Long length

improves peak separationbroader peakslonger analysis time

Thicker stationary phase

more sample onto the column good peak resolution of low molecular weight longer retention times higher column "bleed"

Furnace tube interface

Enable complete conversion of components eluting from the GC column into target gases suitable for analysis by IRMS.

GC-C (CO2), GC-N (N2), GC-H (H2), GC-O (CO)

GC configuration	Furnace tube / Packing / Temperature	Description
1. GC-Carbon ('High Capacity')	Quartz / Copper Oxide / 850°C	High Capacity All applications except natural gas
2. GC-Carbon ('Natural Gas')	Quartz / NiChrome, Copper, Platinum / 950°C	Natural Gas option Suitable for all GC-C applications, but with lower capacity
3. GC-Hydrogen ('Low Temperature')	Quartz / Chromium / 1050°C	All applications except natural gas analysis Suitable for N-containing compounds
4. GC-Hydrogen ('High Temperature')	Ceramic / Empty / 1450°C	Natural Gas option Suitable for most GC-H applications except N containing and halogenated compounds
5. GC-Nitrogen	Quartz / NiChrome, Copper, Platinum / 950°C	A one furnace tube solution Oxidation requires careful optimization
6. GC-Oxygen	Ceramic / Nickel tube / 1250°C	Suitable for all GC-O applications except N containing compounds

Furnace tube interface

C, N: oxidizing combustion reactor (Quartz / Copper Oxide / 850°C)

http://www.isotope.ac.cn/compound-N.pdf

H: low temperature thermal conversion reactor tube (TC) (Quartz / Chromium /1050°C)

B Instrument preparation

The most important thing....

B Sample preparation

Samples

Food authenticity studies utilizing GC-IRMS often involve analysis of the following compounds:

Sample extraction

Extraction and purification of analytes from sample matrix are required before samples are ready for analysis by GC-IRMS.

Purity of extraction is not critical because analytes are separated on the GC column.

Sample preparation: Fatty acids

- Soxhlet method
- Folch method
- Bligh and Dyer method

Microwave-assisted extraction

Supercritical fluid extraction

Ultrasonic-assisted extraction

The FA composition is determined as the <u>methyl esters</u> of FA by GC–IRMS.

The conversion process of FA into FAMEs is called derivatisation.

Source: https://doi.org/10.1016/j.arabjc.2020.06.039

Sample preparation: Amino acids

1	Amin
	cat

mino acids extraction

cation exchange resin Dowex 50W-X8 100mesh 40x2mm column activation of resin sample + IS elution $3M NH_4OH$ evaporate

2 Derivatisation procedure required to make amino acids sufficiently volatile for GC-IRMS measurement.

Esterification: 100µL butanol/HCI 3M for 1h, 110° C

Acetylation: 100µL TFAA, 80° C, 20 min; dry at 4° C; 1mL ethyl acetate

Sample preparation: Flavours

VOCs from sample can be extracted by: LLE (liquid-liquid extraction) SPE (solid-phase extraction) SFE (supercritical fluid extraction) DHS (dynamic headspace sampling) SPME (solid-phase microextraction)

Sample preparation: Flavours

Solid-phase microextraction (SPME)

Sample preparation: Flavours

Solid-phase microextraction (SPME)

Adapted from Indelicato et al, 2014
B Standard Selection

The analytical procedures for organic stable isotope analysis are often non-standardised, and limited certified reference materials (CRMs) are available.

Reference materials that are compatible with GC-IRMS

CRM: BCR-656 absolute alcohol (δ^{13} C)

Institute for Reference Materials and Measurements

n -alkane mixture ($\delta^{13}C$, $\delta^{2}H$)

A7 & B5 (C_{16} - C_{30}) and C4 (C_{17} - C_{25}) (mg in 0.5 mL hexane)

Fatty acid mixture ($\delta^{13}C$, $\delta^{2}H$)

F8-2 & F8-4 (C_{16} - C_{30}); 0.5 mL solution (mg in 0.5 mL cyclohexane / hexane)

Ethanol (δ^{13} C)

C3 plant origin, C4 lant origin; 5 mL sealed in glass ampoule

https://hcnisotopes.earth.indiana.edu/reference-materials/materials-descriptions/all-compounds.html

Reference materials that are compatible with GC-IRMS

INDIVIDUAL VOCs EA-IRMS or TC/IRMS

"reference" δ^{13} C/ δ^{2} H values

Materials (compounds) calibrated separately using EA-IRMS are suitable for GC-C-IRMS as a "reference material mixture" under identical treatment.

- Jochmann & Schmidt (2012) -

"Reference material mixture for VOCs"

In house standards

	EA-IRMS	HTC-IRMS
ethyl butanoate	-25.7 ± 0.01	-180 ± 1.8
hexanal	-25.5 ± 0.02	-40 ± 0.6
(E)-hex-2-enal	-27.5 ± 0.04	-152 ± 1.9
hexyl acetate	-27.0 ± 0.01	-113 ± 2.2
benzaldeyde	-26.0 ± 0.01	~ +470
ethyl 2-methylbutanoate	-24.7 ± 0.01	-185 ± 0.4
2-methylbutyl acetate	-32.9 ± 0.04	-156 ± 0.5
ethyl hexanoate	-32.8 ± 0.05	-290 ± 1.3
[(Z)-hex-3-enyl] acetate	-28.7 ± 0.03	-167 ± 2.6

	Ethyl butyrate	Ethyl-2-methyl butyrate	Butyl acetate	Hexanal	2-methyl buthyl acetate	Ethyl hexanoate	Hexyl acetate	cis-3-hexenyl acetate	Hexanol	rans-2-hexenol	Benzaldehyde
EA										-	
Average Stdev	-25.7 0.01	-24.7 0.01	-28.6 0.06	-25.5 0.02	-32.9 0.04	-32.8 0.05	-27.0 0.01	-28.7 0.03	-24.4 0.05	-27.5 0.04	-26.0 0.01
Liquid inj	ection/s	splitless/	different	concent	tration						
Difference from EA	0.13	-0.14	0.55	-0.69	0.07	-0.21	0.56	0.32	0.65	-0.12	0.29
Liquid inj	ection/s	split									
Difference from EA	-0.66	-0.62	-0.14	-0.99	-0.44	-0.21	0.37	0.24	0.47	-0.22	0.39
SPME/spl	it/differ	ent sam	ple volur	ne							
Difference from EA	-0.47	-0.22	-0.10	-0.02	-0.55	0.07	0.74	0.86	0.13	-0.38	0.19
SPME/spl	itless										
Difference from EA	-0.31	-0.11		-0.05	-0.13	0.10	0.53	0.18		0.96	-0.27

B Sequence preparation

Sequence preparation

- 1. Dummy
- 2. RM1
- 3. RM2
- 4. QC material
- 5. Sample 1
- 6. Sample 2
- 7. Sample 3
- 8. QC material
- 9. RM2
- 10. RM1
- * All in duplicate/triplicate

Dummy

at the beginning for condition purposes

RM for data normalisation

at least 2 different RMs or 1 reference mixture at the beginning and the end of the sequences in at least 2 different concentrations (0.5 nA - 15 nA)

QC material

analysed periodically throughout the sequence – separately or within reference mixture or sample

Drift correction

Time drift – individual measurement number taken as proxy for time

The only assumption is that each measurement takes approximately the same time.

The degree of drift should be determined by:

analysis of RMs at the beginning and the end of the sequences

Many compounds often fall out of the linear range of instrument

Only the values within a linear range should be reported

Peak size / linearity correction

Logarithmic trendline

Peak size / linearity correction

Significantly improved the measurement error of small peaks (below 1nA) from 3 ‰ to 0.5 ‰.

Two-point normalisation

The true δ values when using **2** RMs can be calculated using the following equation:

$$\delta_{true\,(Spl)} = m \times \delta_{raw\,(Spl)} + b$$

m – the slope of the regression line ("expansion factor")

b – the intercept ("shift factor")

Raw (measured) δ value

Multiple-point isotopic linear normalisation

Reduce the random error associated with the analysis of a reference material used to anchor the linear scale.

O Measurement uncertainty

Measurement uncertainty

In-house standard	Reference values (‰)	Combined $(u_c, k = 1)$	uncertainty
ethyl butanoate	-25.7	0.47	
hexanal	-25.5	0.32	
(E)-hex-2-enal	-27.5	0.76	
hexyl acetate	-27.0	0.64	
benzaldehyde	-26.0	0.75	
ethyl 2-methylbutanoate	-24.7	0.14	
2-methylbutyl acetate	-32.9	0.25	
ethyl hexanoate	-32.8	0.20	
[(z)-hex-3-enyl] acetate	-28.7	0.23	Perini et al., 2019: $1\sigma = \pm 0.8\%$ (vanillin)
Method		0.42 ‰	Schipilliti et al., 2010: $10 = \pm 0.4\%$ (acetic acid)

OIsotope fractionation

Sample preparation procedures

Are of the utmost importance because errors that occur cannot be corrected subsequently.

At least one internal standard of a similar chemical nature and known isotopic composition should be added to the sample before sample preparation.

Instrumental conditions

May also cause irreproducible isotope fractionation.

Compound specific δ^{13} C measurements

effects of equilibration, adsorption, desorption times and temperatures

Compound specific δ^{13} C measurements

effects of equilibration, adsorption, desorption times and temperatures

Compound specific $\delta^2 H$ measurements

effects of equilibration, adsorption, desorption times and temperatures

Method error < 10 ‰ can be obtained by optimising measurement conditions.

Perini et al., 2019: $1\sigma = \pm 7\%$ (vanillin) Hatorri et al., 2010: $1\sigma = \pm 5\%$ (acetic acid)

Recommendations for isotope community

Extraction and purification of analytes from sample matrix are required before analysis.

Appropriate data normalisation provides reproducible and accurate results.

No isotope fractionation when optimised parameters are used.

Information about method uncertainty is needed for appropriate data evaluation.

The four gears building trust in our food

The four gears building trust in our food

Data interpretation requires extensive reference data set of authentic food samples against which a sample under investigation can be compared.

General requirements

Samples within database are authentic

Collected from primary producers by impartial collectors

Adequate number of samples

Sufficiently representative

Cover natural variation
The four gears building trust in our food

The four gears building trust in our food

The choice of statistical method depends on the study goal and the characteristics of the objects and variables included.

Comparative analysis of (natural and synthetic) isotope ranges.

Combination of two isotopes

3 general chemometric approaches

Explorative analysis

Classification

Class-modelling

Confirmation that a specific sample originates from a particular country.

One class classification problem

Class-modelling or one-class classifiers

Data Driven Soft Independent Modelling of Class Analogy (DD-SIMCA)

Meant to distinguish objects of one particular class from all other objects and classes.

The four gears building trust in our food

The four gears building trust in our food

Methodology Database Data analysis Market testing

Stable isotopes what can we achieve?

Natural or synthetic

Authentic or adulterated

Organic or conventional

Geographical origin

Naturalness of Food Flavourings

Fruit flavourings on the market can be questioned

Strojnik et al., Food Chemistry 277, 766-773, 2019

All 4 samples contain synthetic vanillin

2 compounds indicate presence of synthetic flavour in truffle samples

Food authenticity

Undeclared addition of sugar in apple juice

10% of the samples

Undeclared addition of water in milk

From 7 to 30% added water

Gregorčič et al. Milk Authentication: Stable Isotope Composition of Hydrogen and oxygen in Milks and their Constituents. Molecules, 2020

Adulteration of olive and pumpkin oil

Spangenberg & Ogrinc, JAFC, 2001

Potočnik et al., JFAC 2016

Organic or conventional?

(

Comparison between different production practices for hops

Geographical origin of Fruits and Vegetables

REPUBLIC OF SLOVENIA MINISTRY OF AGRICULTURE, FORESTRY AND FOOD

THE ADMINISTRATION OF THE REPUBLIC OF SLOVENIA FOR FOOD SAFETY, VETERINARY AND PLANT PROTECTION

Slovenian origin?

% of samples non compliant with declaration

Acknowledgements

Implementation of research

PROMECLIFE

Novel food products for PROmotion of MEDiterranean LIFEstyle and healthy diet

THANK YOU!

Any questions?

TUNTWIN Summer School, April 18-20, 2023