

Les apports du numérique dans l'analyse physicochimique de produits alimentaires : la chimiométrie.

De la stratégie expérimentale à l'analyse de données : intelligence naturelle , intelligence artificielle ?

Co-funded by the Horizon 2020 Framework Programme of the European Union under the grant N° 952306

Yohann Clément & Pierre Lantéri

Le Rôle de la Chimiométrie dans les Sciences Analytiques

- ➤ Participer à la stratégie expérimentale pour structurer l'expérimentation (PEX)
- ➤ Participer à l'acquisition des données souvent complexes issues d'une ou plusieurs techniques analytiques
- > Traiter les données brutes pour optimiser la matrice des données
- > Traitement de l'information / résultats/ enrichissement de bases de données

Origine des données

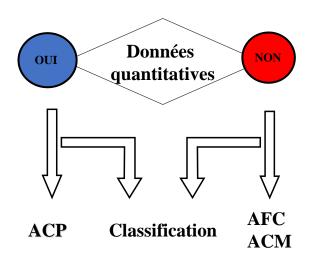
Données Issues d'essais structurés a priori?

Plans d'Expériences

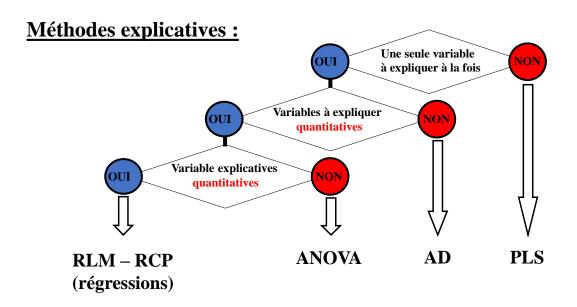
Analyse de Données

Analyse de données

Variables explicatives et à expliquer séparées :



Méthodes explicatives


Méthodes descriptives

Analyse de données

Méthodes Descriptives :

Analyse de données

Thème	Domaines	Méthodes/Outils
Analyses de Données	Analyses NIR, IR-FT, UV, Propriétés Physicochimiques Chromatographies HPLC,GC Spectrométrie Masse, RMN Environnement, Santé, Matériaux,	 - Analyses Statistiques, - Analyse Factorielle - Analyse en composantes principales (PCA) -Régressions RLM/PCR/PLS, -Réseaux neuronaux -QSAR/QSPR: Relation Structures- Activité, Propriétés,
Calibration/ Etalonnage	Spectroscopie : UV, IR-FT, NIR Chromatographies Analyses chimiques	-Régressions MLR, PCR, PLS -Réseaux neuronaux -PCA
Classification	Identification Adultération Contrôle qualité Métabolomique	- Réseaux neuronaux - PCA - Analyse Discriminante - K means
« intelligence artificielle »	Analyses Chimiques, pH métrie, QSAR, Etalonnage, Spectrométrie, PLS/calibration	-Réseaux neuronaux -Système flou -Algorithme Génétique

<u>RMN</u>

Les données: de l'acquisition au traitement Gestion de contraintes <u>Criblage</u> Surface de réponse <u>Mélange</u> Algorithmes d'échanges Hadamard Plan composite Simplex **ASCA** Factorielle Réseau de Dohlert Réseau de Scheffé Fractionnaire Box Behnken Space Filling Design Spectrométrie de masse Spectroscopie IR - RAMAN Spectroscopie RMN Chromato. **Spectroscopie** Chromatographies, Spectrométrie de masse

Traitement des données

couplages

8

Expérimentales

Stratégies

Acquisitions analytiques

<u>vibrationnelle</u>

OUTILS CHIMIOMETRIQUES en forme <u>Filtrage</u> Changement d'échelles **Transformation Normalisation** Alignement de variables Log10 Centrage Correction de ligne de 1/T. ... Standardisation ... base. ... **Modelisation** Multi-blocks method **Machine Learning Univarite Tests** <u>Description</u> SVM PLS AFM t-student PCA PLS-DA PARAFAC Ramdom Forest Correlation ICA OPLS COMDIM Réseaux de neurones X voriate 1: 39% expl. vor 4 2 0 -2 variate 3: 19% expl. vo 0 PC1: 40% expl. var

Analyse en composante Principale ACP

Analyse en Composantes Principales (ACP):

A partir d'un jeu de données contenant un très grand nombre de variables, on désire connaître lesquelles sont les plus importantes, et comment réduire ce jeu de données afin de le représenter de manière simple sur 2 ou 3 axes.

L'ACP est une méthode de réduction de dimension qui va permettre de transformer des variables très corrélées en nouvelles variables décorrélées les unes des autres.

Il s'agit de résumer l'information qui est contenue dans une base de données en un certain nombre de variables synthétiques appelées : **Composantes principales**. L'idée est ensuite de pouvoir projeter ces données sur l'hyperplan le plus proche afin d'avoir une représentation simple de nos données.

Qui dit réduction de dimension dit perte d'informations. C'est là tout l'enjeu que représente une Analyse en Composantes principales. Il faut pouvoir réduire la dimension de nos données tout en conservant un maximum d'informations.

Analyse en composante Principale ACP

L'ACP est une méthode exploratoire / descriptive

- Exploration / description de données multivariées avec de grandes dimensions.
- Elle permet la détermination des liens entre variables, l'identification des similitudes entre individus ou la mise en évidence de valeurs aberrantes ...
- Elle permet la préparation / réduction ou nettoyage des données avant une nouvelle analyse chimiométrique.
- Elle peut préparer à une future modélisation comme la Régression sur Composantes Principales (PCR)

Analyse en Composante Principales : résumé de la méthode

Collecte des donnés

Prétraitement des données : Normalisation, Centrage ...

Calculs de l'ACP:

Représentation matricielle

Calculs des valeurs propres et vecteurs propres de la matrice de corrélation

Sélection d'un nombre réduit de Composantes Principales (PC) Représentations graphiques dans un espace de quelques dimensions (2,3...) Projections des individus (scores) et des variables (loadings)

Analyse de miels à l'aide la chimiométrie Analyse en Composante Principale (ACP)

13

Analyse de miels monofloraux

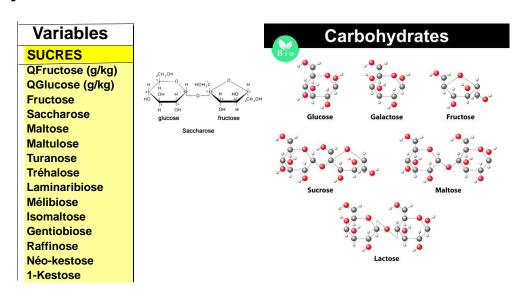
Analyse des miels : détermination de l'origine florale?

Amino acides

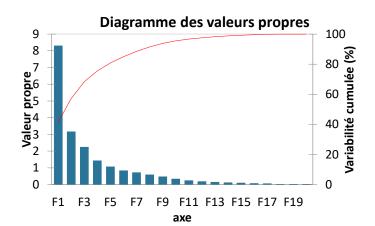
Acide Gluconique

Sucres:
Fructose,
Glucose, ...

Variétés de miel
Acacia
Châtaignier
Lavande
Sapin
Tournesol

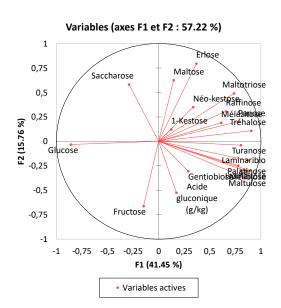


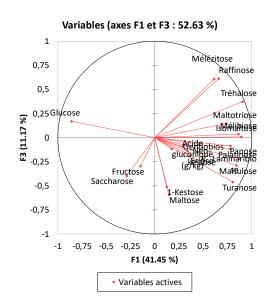
Analyse de miels monofloraux


Les descripteurs mesurés et dosés sont :

- Les sucres
- Les acides aminés

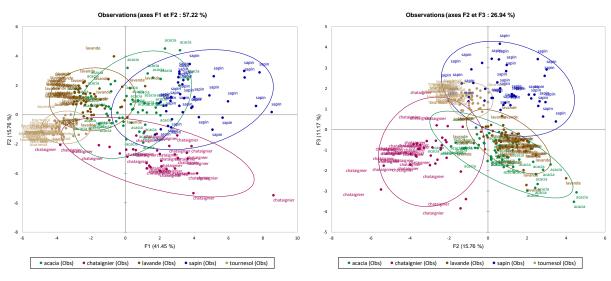
Analyse de miels monofloraux – ACP- sucres


Analyse de miels monofloraux – ACP -Sucres

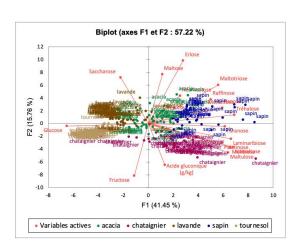


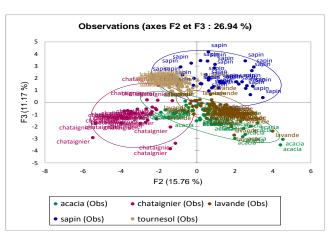
	F1	F2	F3	F4	F5
Valeur propre	8,2	3,1	2,2	1,4	1,0
Variabilité (%)	41,4	15,7	11,1	7,1	5,2
% cumulé	41,4	57,2	68,3	75,4	80,7

Analyse de miels monofloraux – ACP - Sucres


Projection des variables (loadings)

Analyse de miels monofloraux – ACP - Sucres

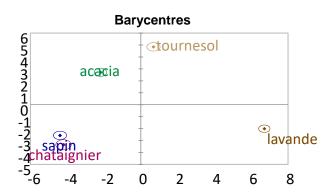

Projection des individus (scores) :

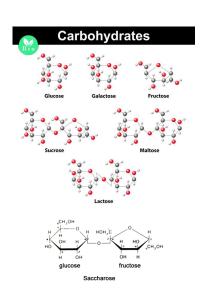


19

Analyse de miels monofloraux – ACP -Sucres

Biplot – projection sur le même graphique des variables et des individus (scores et des loadings):




20

Analyse des miels monofloraux: ANALYSE DISCRIMINANTE (AD) via les sucres

21

Analyse de miels monofloraux – AD - Sucres

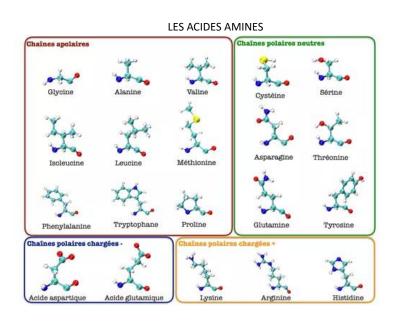
22

Analyse de miels monofloraux – AD - Sucres

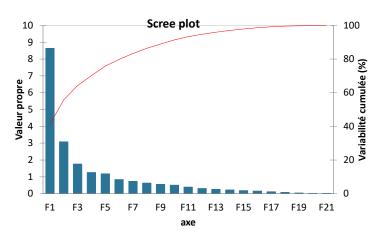
Jeu de données divisée en deux: Un jeu d'apprentissage et un jeu de validation externe

Matrice de d	onfusion p	our l'échant	illon d'apprentissage :				
de \ à	acacia	chataignier	lavande	sapin	tournesol	Total	% correct
acacia	35	0	0	0	1	36	97,22%
chataignier	0	22	0	0	1	23	95,65%
lavande	0	0	41	0	1	42	97,62%
sapin	0	0	0	30	0	30	100,00%
tournesol	0	0	0	0	25	25	100,00%
Total	35	22	41	30	28	156	98,08%

Matrice de c	onfusion p						
de∖à	acacia	chataignier	lavande	sapin	tournesol	Total	% correct
acacia	11	0	0	0	0	11	100,00%
chataignier	0	10	0	0	0	10	100,00%
lavande	0	0	10	0	1	11	90,91%
sapin	0	0	0	7	0	7	100,00%
tournesol	0	0	0	0	11	11	100,00%
Total	11	10	10	7	12	50	98,00%


Analyse de miels monofloraux – AD - Sucres

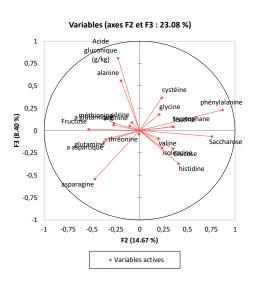
Jeu de données monobloc: validation par validation croisée


Matrice de co	nfusion pour	les résultats d					
de \ à	acacia	chataignier	lavande	sapin	tournesol	Total	% correct
acacia	34	0	1	0	1	36	94,44%
chataignier	0	22	0	0	1	23	95,65%
lavande	0	0	41	0	1	42	97,62%
sapin	0	0	0	30	0	30	100,00%
tournesol	0	0	0	0	25	25	100,00%
Total	34	22	42	30	28	156	97,44%

Analyse de miels monofloraux – Acides Aminés

Variables ACIDES AMINES a aspartique a glutamique asparagine sérine glutamine histidine glycine thréonine alanine arginine valine phénylalanine isoleucine leucine lysine

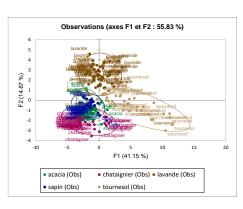
Analyse de miels monofloraux – ACP – Acides Aminés

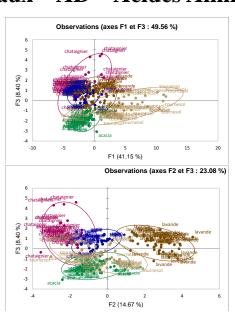


	F1	F2	F3	F4	F5
Valeur propre	8,6	3,0	1,7	1,2	1,1
Variabilité (%)	41,1	14,6	8,4	5,9	5,6
% cumulé	41,1	55,8	64,2	70,2	75,8

Analyse de miels monofloraux – ACP- Acides Aminés

Projection des variables:

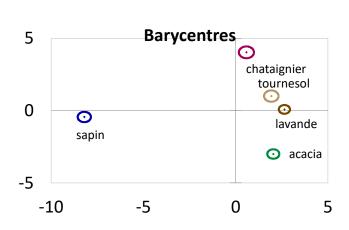


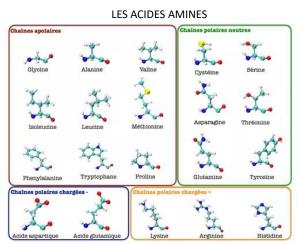


27

Analyse de miels monofloraux – AD – Acides Aminés

Projection des individus:




28

Analyse des miels monofloraux: ANALYSE DISCRIMINANTE (AD) via les acides aminés

29

Analyse de miels monofloraux – AD- Acides Aminés

Analyse de miels monofloraux – AD- Acides Aminés

Matrice de	Matrice de confusion pour l'échantillon d'apprentissage :						
de∖à	acacia	chataignier	lavande	sapin	tournesol	Total	% correct
acacia	38	0	0	0	0	38	100,00%
chataignier	0	26	0	0	0	26	100,00%
lavande	0	0	36	0	0	36	100,00%
sapin	0	0	0	28	0	28	100,00%
tournesol	0	0	0	0	28	28	100,00%
Total	38	26	36	28	28	156	100,00%

Matrice de	confusion p	our l'échant	illon de validation :				
de∖à	acacia	chataignier	lavande	sapin	tournesol	Total	% correct
acacia	8	0	0	0	1	9	88,89%
chataignier	1	6	0	0	0	7	85,71%
lavande	0	0	17	0	0	17	100,00%
sapin	0	0	0	9	0	9	100,00%
tournesol	0	0	0	0	8	8	100,00%
Total	9	6	17	9	9	50	96,00%

Analyse de miels monofloraux – AD- Acides Aminés

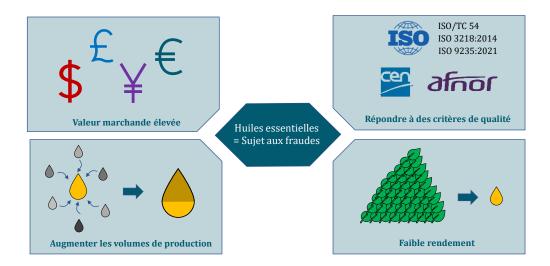
Matrice de	atrice de confusion pour les résultats de la validation croise						
de∖à	acacia	chataignier	lavande	sapin	tournesol	Total	% correct
acacia	38	0	0	0	0	38	100,00%
chataignier	0	26	0	0	0	26	100,00%
lavande	0	0	35	0	1	36	97,22%
sapin	0	0	1	27	0	28	96,43%
tournesol	0	0	0	0	28	28	100,00%
Total	38	26	36	27	29	156	98,72%

Méthodes analytiques pour le contrôle de l'authenticité

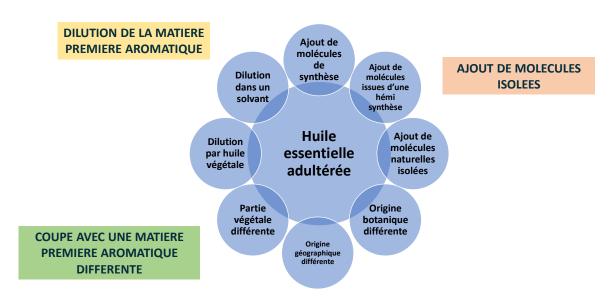
33

Développement de méthodes analytiques et de banques de données pour le contrôle de l'authenticité de métabolites secondaires actifs issus de plantes aromatiques et médicinales

> Thèse présentée par Aurélien CUCHET Encadrée par : Dr. Hervé CASABIANCA et M. Patrick JAME



Présentation des extraits aromatiques naturels


35

Les huiles essentielles sont la cible de nombreuses fraudes

36

Multiples adultérations potentielles

37

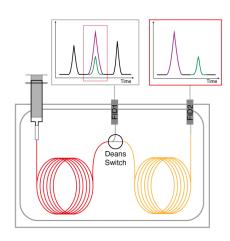
Contrôle des huiles essentielles

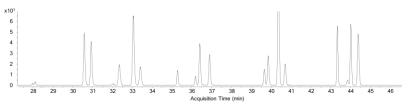
Techniques classiques

Exemples:

- Analyses par GC-FID et GC-MS
- Contrôles olfactifs
- Tests physicochimiques

Techniques avancées Combinaison de techniques

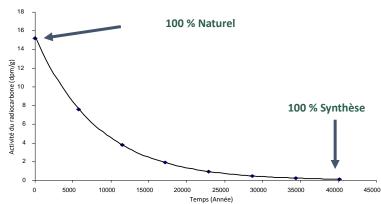

Exemples:


- Mise en évidence d'impuretés
- Analyses énantiosélectives
- Analyses isotopiques

38

ANALYSES ENANTIOSELECTIVES

Développement de méthodes GC multidimensionnelles

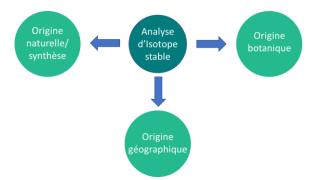


- Détection d'ajouts de synthèse (Mélange racémique)
- Mise en évidence de coupe entre huiles essentielles (Différences de profils énantiomériques)

39

ANALYSES ISOTOPIQUES

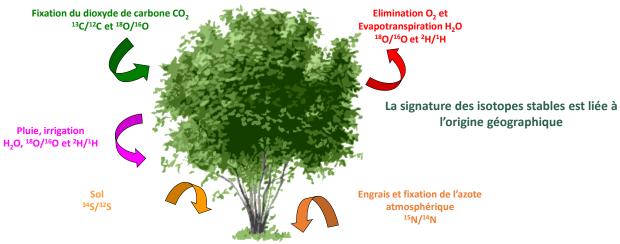
☐ Analyse des isotopes radioactifs: détermination de l'activité du ¹⁴C


L'activité radioactive est mesurée en désintégration par minute et par gramme de carbone (dpm/g).

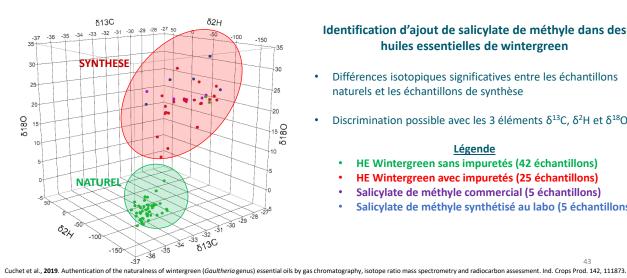
L'authentification de la naturalité peut être réalisée en mesurant l'activité du ¹⁴C

- 100% de carbone bio-sourcé -> Produit 100% naturel.
- 0% de carbone bio-sourcé -> Produit d'origine pétrochimique.
- Valeur comprise entre 0% et 100% -> Mélange d'un produit d'origine naturelle et d'origine synthétique.

ANALYSES ISOTOPIQUES


- ☐ Analyse des isotopes radioactifs: détermination de l'activité du ¹⁴C
- ☐ Analyse des ratios isotopiques stables (¹³C/¹²C; ²H/¹H; ¹80/¹60, ³⁴S/³²S)
 - L'évaluation du rapport isotopique stable conduit à distinguer les molécules synthétiques et naturelles
 - Les isotopes stables sont utilisés comme marqueurs géographiques et variétaux

41


ANALYSE DES ISOTOPES STABLES

Harmonie entre le métabolisme de la plante et son environnement

42

EXEMPLE ETUDE DE L'HUILE ESSENTIELLE DE GAULTHÉRIE (Gaultheria) Analyse isotopique globale par EA-C/P-IRMS

Identification d'ajout de salicylate de méthyle dans des huiles essentielles de wintergreen

- Différences isotopiques significatives entre les échantillons naturels et les échantillons de synthèse
- Discrimination possible avec les 3 éléments δ^{13} C, δ^{2} H et δ^{18} O

Légende

- HE Wintergreen sans impuretés (42 échantillons)
- HE Wintergreen avec impuretés (25 échantillons)
- Salicylate de méthyle commercial (5 échantillons)
- Salicylate de méthyle synthétisé au labo (5 échantillons)

ETUDE DES HUILES ESSENTIELLES D'ALLIACÉES (Allium)Problème de pureté

Huile essentielle d'échalote

Huile essentielle de poireau

Huile essentielle de ciboulette

Huile essentielle d'oignon

Composition de ces huiles essentielles similaires Différences de prix importantes entre les origines botaniques

Comment différencier ces huiles essentielles ?
Discrimination botanique par analyse isotopique multi-éléments multi-composés

44

Cuchet et al., 2021. Multi-element (13C, 2H and 34S) bulk and compound-specific stable isotope analysis for authentication of Allium species essential oils. Food Control. 126, 108086.

ETUDE DES HUILES ESSENTIELLES D'ALLIACÉES (Allium)Problème de pureté

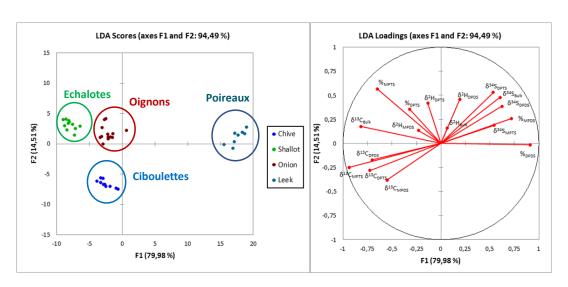
Extraction des huiles essentielles d'alliacées Utilisation en agroalimentaire

Famille des *Allium*Oignons, poireaux, échalotes, ciboulettes

Composition de l'huile essentielle complexe avec de nombreux organosulfures

S S Trisulfure de dipropyle DPTS

Mesures isotopiques ciblées des principaux metabolites organosulfurés 3 ratios isotopiques d'intérêt: δ^{13} C, δ^{2} H et δ^{34} S

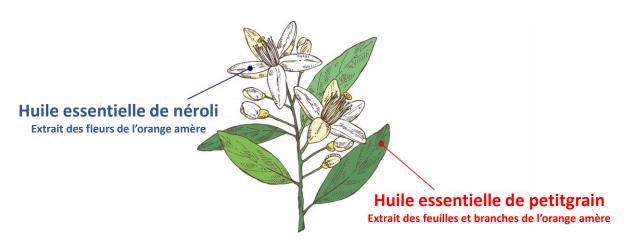


S Disulfure de méthyle propyle MPDS

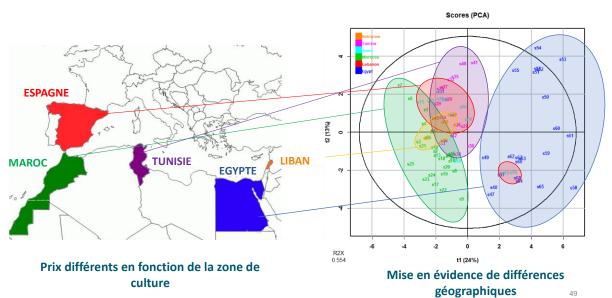
45

Cuchet et al., 2020. Apport de l'analyse multi-isotopes pour l'authentification des huiles essentielles.. Annales des falsifications, de l'expertise chimique et toxicologique. 992, 58-70.

ETUDE DES HUILES ESSENTIELLES D'ALLIACÉES (Allium)Discrimination botanique par analyses chimiométriques


46

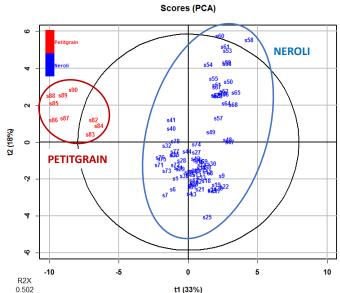
Cuchet et al., 2021. Multi-element (13C, 2H and 34S) bulk and compound-specific stable isotope analysis for authentication of Allium species essential oils. Food Control. 126, 108086


Analyse discriminante des Alliacés

Confusion matrix for the estimation sample:						
f.,,,,, \ ,,,	Cile a viladda	C-11-+-	0:	D - :	T-4-1	0/
from \ to	to Ciboulette		Oignon	Poireau	iotai	% correct
Ciboulette	oulette 7		0	0	7	100,00%
Echalote	0	4	0	0	4	100,00%
Oignon	0	0	5	0	5	100,00%
Poireau	0	0	0	6	6	100,00%
Total	7	4	5	6	22	100,00%
Confusion matrix for the validation sample:						
from \ to	Ciboulette	Echalote	Oignon	Poireau	Total	% correct
Ciboulette	5	0	0	0	5	100,00%
Echalote	1	4	0	0	5	80,00%
Oignon	0	0	8	0	8	100,00%
Poireau	0	0	0	2	2	100,00%
Total	6	4	8	2	20	95,00%

ETUDE DE L'HUILE ESSENTIELLE DE NÉROLI (*Citrus aurantium L.***)** Problème de pureté

Compositions des deux huiles essentielles très proches Aucun marqueur ne permet de distinguer un ajout de petitgrain dans le néroli


Cuchet et al., 2021. Determination of enantiomeric and stable isotope ratio fingerprints of active secondary metabolites in neroli (Citrus aurantium L.) essential oils for geographical and purity authentication. Soumis à publication

Etude de 90 échantillons de néroli et de petitgrain

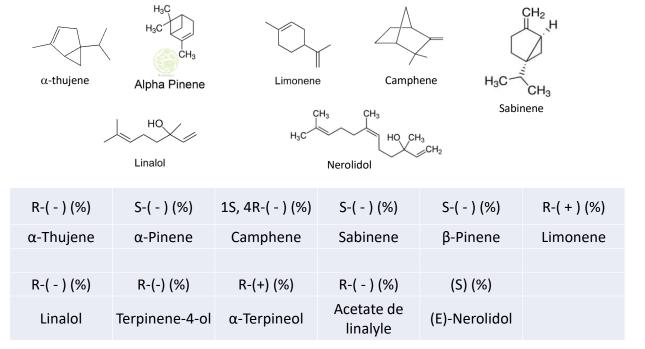
Analyse énantiomérique de 14 molecules chirales

Nombreuses molécules en concentration significative

Analyse isotopique δ^{13} C et δ^{2} H de 10 molecules

0.502 t1 (33%)
Cuchet et al., 2021. Determination of enantiomeric and stable isotope ratio fingerprints of active secondary metabolites in neroli (Citrus aurantium L.) essential oils for geographical and purity authentication. Soumis à publication

ETUDE DE L'HUILE ESSENTIELLE DE NÉROLI (Citrus aurantium L.)

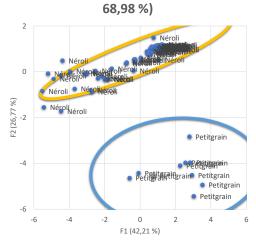

Adultération d'un échantillon de néroli, origine Maroc

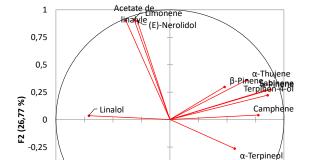
Scores (PCA) Mise en evidence des adultérations 90% Neroli - 10 % Petitgrain 80% Neroli - 20 % Petitgrain 50% Neroli - 50 % Petitgrain 50% Neroli - 50 % Petitgrain 80% Neroli - 50 % Petitgrain 50% Neroli - 50 % Petitgrain 80% Neroli - 50 % Petitgrain

Cuchet et al., 2021. Determination of enantiomeric and stable isotope ratio fingerprints of active secondary metabolites in neroli (Citrus aurantium L.) essential oils for geographical and purity authentication. Soumis à publication

ETUDE DE L'HUILE ESSENTIELLE DE NÉROLI

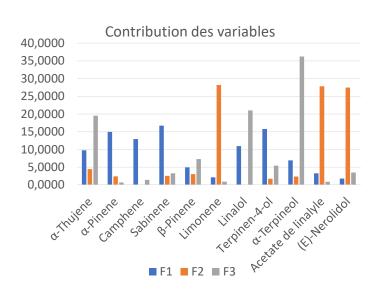
Analyses énantiosélectives

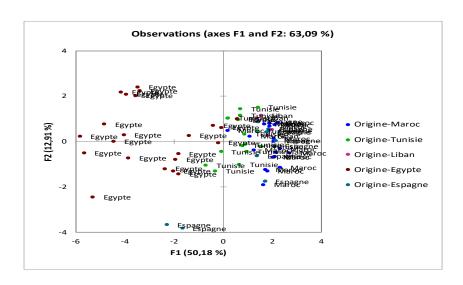



-0,5

-0,75

Séparation NEROLI/PETIGRAIN

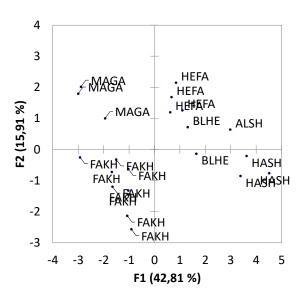




Variables (axes F1 and F2: 68,98 %)

-1 -1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 F1 (42,21 %)

Séparation NEROLI/PETIGRAIN



Confusion ma	atrix for the	e estimation sample:					
from \ to	Egypte	Espagne	Liban	Maroc	Tunisie	Total	% correct
Egypte	14	0	0	0	0	14	100,00%
Espagne	0	5	0	0	0	5	100,00%
Liban	0	0	3	0	0	3	100,00%
Maroc	0	0	0	15	0	15	100,00%
Tunisie	0	0	0	0	9	9	100,00%
Total	14	5	3	15	9	46	100,00%

Confusion m	atrix for th	e validation sample:					
from \ to	Egypte	Espagne	Liban	Maroc	Tunisie	Total	% correct
Egypte	8	0	0	0	0	8	100,00%
Espagne	2	0	0	3	0	5	0,00%
Liban	1	0	0	0	0	1	0,00%
Maroc	0	0	0	5	0	5	100,00%
Tunisie	3	0	0	3	0	6	0,00%
Total	14	0	0	11	0	25	52,00%

ETUDE DE L'HUILE ESSENTIELLE DE NÉROLI (*Citrus aurantium L.*) Répartition des Fournisseurs NEROLI Egyptien

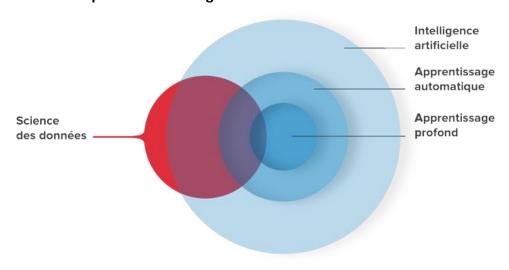
CONCLUSIONS & PERSPECTIVES

59

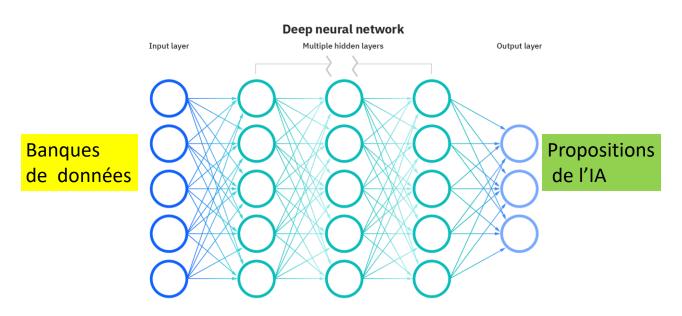
CONCLUSIONS

Approche Multianalytique

- Efficacité de l'outil analytique pour distinguer les multiples adultérations possibles: Discrimination variétale et géographique, naturalité, ...
- Complémentarité des techniques pour mettre en place un arbre de décision et améliorer le diagnostic final
- D'autres techniques sont efficaces: IR, SNIF-NMR, GC*GC, HPTLC, ...


Etablissement de banques de données

- Construction de bases de données afin d'établir des critères de conformités
- Permet de rendre un verdict cohérent sur l'authenticité des matières premières.


60

CONCLUSIONS

La construction de **bases de données fiables et cohérentes** est une des composantes essentielles pour la mise en œuvre **de procédés d'intelligence artificielle** ...

PERSPECTIVES

A suivre ...

63