TUNTWIN

Environment

Analysis of micropollutants in solid matrices: from broad screening to quantification

Emmanuelle Vulliet Groupe TRACES – ISA UMR5280

Funded by the Horizon 2020 Framework Programme of the European Union under the grant N° *952306*

Micropollutants in the environment

Anthropogenic activities responsible for widespread environmental contamination

Analysis of micropollutants in the environment

Environmental solid matrices

Wastewater treatment

Livestock manure

SOLID MATRICES

Organic wastes such as sewage sludge and manure: Exogenous organic matters (EOMs)

Environmental solid matrices: problematic

EOM recycled in agriculture for their agronomic potential

Experimental site

Study carried out on 3 experimental plots on the same site

Study carried out on 3 experimental plots on the same site:

- soil without input
- soil after spreading of WWTP sludge
- Soil after spreading of agricultural inputs (slurry or cattle manure)

Vue latérale

Vue de face depuis la tranchée

Sampling:

- Infiltrated water
- Spreading EOMs
- Soil columns

Which contaminants to monitor ?

Analysis of the sanitation diary of 5 farmers over a period of 3 years

Two main families:

Beta-lactams

Aminoglycosides

Analytical challenges throughout the protocol

Targeted beta-lactams

7 parent molecules and one metabolite

QuEChERS: Testing of different extraction kits (EN, AOAC, Original, Veterinary Drugs)

EN method (citrate) : only one that allows the extraction of amoxicillin + best recovery on all molecules

- Lowers the pH of the extract and decreases the polarity of the analytes resulting in a better transfer into the organic phase
- Contains citrate salts chelating metal cations => better extraction of organic compounds

Various aqueous phases Eau/Eau + EDTA 0.1M/Eau + Formic acid (FA) 0.1% / Eau + EDTA 0.1 M + FA 0.1%

- ✓ Addition of EDTA : Chelation of metal cations=> release of organic cations
- <u>Addition of formic acid</u>: Reduction of the negative surface charge of the sample release of matrix bound species
- <u>Combinaison of both</u>: Acid modifies the ionisation of EDTA which becomes monoanionic (H3Y-) decrease of its chelatig power

Addition of a « matrix dispersion » step: increases the contact surface of the sample with the solvent

EDTA-treated Fontainebleau sand used to promote dispersion

Beta-lactams, <5% recovery after dispersive SPE H-bonding between COOH and amines

Other option: purification on SPE cartridge

1/ Conditioning: ACN

2/ Purification

QuEChERS extract

Purified extract

Modification of matrix effects (ME): 3 cases

16

Final condition of extraction

Analytical conditions

Separation : UPLC 1290 Infinity, Agilent

Detection : 5500QTrap, AB Sciex

Column : Kinetex F5 , 100 x 2.1mm, 1.7 μ m (Phenomenex) A: H₂O + 0.1% Formic Acid B: ACN + 0.1% Formic Acid Qtrap are QqQ mass spectrometers with a linear trap for Q3

Analysis of sludge collected over a 3 year period	Molecule	Detection frequency	C _{min} (ng/g)	C _{moy} (ng/g)	C _{max} (ng/g)		
	CFP	50%	10.2	23.5	53.3		
	AMX-DKP	50%	3.0	5.3	9.5		

Analytical challenges throughout the protocol

How to increase sensitivity: MRM vs MRM³

QTrap - Mode MRM³

Optimization of the acquisition in MRM³

MRM vs MRM³

Transition P1 \rightarrow F1

Transition P1 \rightarrow F1 \rightarrow F1'

MRM parameters:

- Declustering potential (DP)
- Collision cell entrance and exit potentials (EP, CXP)
- Collision energy (CE)

Specific parameters MRM³

- Q3 excitation energy (AF2)
- AF2 application time (Ex Time)
- Accumulation time in Q3 (LIT time)
- Q0 ion focalization

Example of ceftiofur (524 \rightarrow 241 \rightarrow 166)

Example of ceftiofur (524 \rightarrow 241 \rightarrow 166)

Transition 524 \rightarrow 241 \rightarrow 166

- After 25 ms excitation , no intensity increase of *m*/*z*=166: F1 ion is fully fragmented
- Up to 100 ms of accumulation, less than 10% intensity increase
- Better focalization allows up to 100% signal increase

Comparison with LC-MS/MS

1st interest: sensitivity

MRM³ acquisition provides better sensitivity:

- ✓ Slope of the calibration curve is 100 times higher compared to MRM acquisition.
- ✓ Detection of lower concentration variation between samples
- ✓ Better absolute quantification precision

Comparison with LC-MS/MS

2nd interest: selectivity

Adding an extra level of specificity with the second generation transition

Removal of shouldering and interfering peaks

Comparison with LC-MS/MS

1st interest : Sensitivity

2nd interest : Specificity

Impacts on the limits of quantification (ng/g)

ncreasing t	he limits	MRM ³	MRM			
	CEF	0.8	1.9			
	AMX	11.9	17.4			
	CFP	3.8	8.7			

Lowering	Lowering the limits		MRM				
	AMP	5.9	2.4				
	CLX	14.8	7.7				

Hypothesis

Low mass daughter ion (<200 Da) + low loss (46 Da) => increased transition background

Lists of molecules for targeted analysis

- Not relevant to the project
- Availability of analytical standards

Suspect screening

- Comparison to databases
- Detection of compounds present in the matrix
- Identification of a wider variety of molecules

New list

- More representative of the sample
- More suitable extraction and analysis methods

Confirmation

• Standards only for suspected molecules

Suspect screening

Strategy on different matrices using databases:

Suspect screening

Processing the data from the two screenings: comparison of experimental data with theoretical data

PesticideScreener+Toxscreener

- Retention time (Δt_R)
- Mass to charge ratio ($\Delta m/z$) of parent
- Isotopic pattern
- >70% fragments
- Mass to charge ratio ($\Delta m/z$) of fragments

- Retention time
- MRM transition

Suspect screening

List of suspects

244		Data Set		Formula	Analyte			S/N		es Intensity	MRSQ	Score	m/z Score R	T Score m	Sigma Score	Ions Score	∆m/z [mDe]	Δm/z [ppm]	m/z eq
1		pQC100ppb-1	RA2	C ₄ D ₄ H ₄ CIN ₂ O ₂	ImidaclopridD4			6263	335	27 84689			••	••	•••		0.27	1.02	260.0843
2		pQC100ppb-1	RA2	CuHUN/OLS	Amisulpiride			12808	1422	88 330698			••	••	••		0.59	1.59	370.1795
3		pQC100ppb-1	RA2	CuH01*	Carboryl Fragm 14	15		5401	1377	88 336213			••	••	••	••	0.04	0.30	145.0548
4		pQC100ppb-1	RA2	CuHENO.	Diethofencarb			1233	460	74 114015			**				0.46	1.73	268.1543
5		pQC100ppb-1	_RA2	C19HISCIN2O2S	Hexythiazox			4028	601	15 162286			•••				0.07	0.19	353,1085
6		pQC100ppb-1	RA2	CuHuN ₂ O ₂ PS	Phoxim			1673	573	31 151404			••				0.35	1.17	299.0614
7		pQC100ppb-1	_RA2	C18H18OJP	Triphenylphospha	ite		45	32	56 7413							0.25	0.76	327.0783
8		pQC100ppb-1	_RA2	CasHasNaO	Disopyramide			11133	1659	51 397799			••	**	••		0.17	0.49	340.2383
9		pQC100ppb-1	_RA2	C ₁₂ H ₃ CIN ₂ O ₂	Cetirizine			6052	789	77 189664			••	••	••	••	-0.06	-0.16	389.162
10		pQC100ppb-1	_RA2	C+H+CI+NO+PS	Chlorpyriphos-m	ethyl		1530	170	51 45249			**	••	••		0.01	0.02	323,899
11		pQC100ppb-1	_RA2	C ₁₀ H ₁₀ N ¹⁴	Benzododecinium			120	25	15 4426			**	••	**	••	-0.48	-1.59	304,299
12		pQC100ppb-1	RA2	C18HarCINyO	Cyproconazole Pe	sak 1 (Minor)		1192	246	63584			•••	••			0.45	1.57	292.1211
13		pQC100ppb-1	_RA2	C ₈ D ₈ H ₈ CIN ₈	Atrazine D5			2955	936	67 224837			••	••	••	••	0.21	0.93	221.132
14		pQC100ppb-1	_RA2	C ₄ H ₆ CIN ₅ O ₁ S	Clothiandin			3597	187	47325		****					0.42	1.69	250.016
15		pQC100ppb-1	_RA2	CuHuNO ₄	Bisoprolol			6784	1441	33 335656			•••	••	•••		0.26	0.81	326.232
		_																	,
ete	led Analyte ion Result	1 23																	~ "
r	Analyte	Mandatory	Ion Type			Ion Ratio	Ion Ratio Exp.	Ion Ratio deviation Vali	d Ratio Reference	n Formula		∆RT (min)	∆m/z [mDa]	∆m/z [pp	m] mSigm	a m/zeip.	m/z meas	RT [min] exp	RT (m
	Cetirizine		165.070							C13H91*		0.60	-0.02	-0.	11 558.8	165.0099	165.0699	7.83	8
	Cetirizine		166.078							C12H22 ¹⁺		0.61	-0.25	-1	48 1.1	166.0777	166.0775	7.83	8
3	Cetirizine	1	201.047							C18HasCI		0.61	-0.02	-0.	11 4.0	201.0466	201.0465	7.83	8
4	Cetirizine	57	M+nH							C ₂₃ H ₂₆ Cl	N2O21*	0.61	-0.06	-0.	16 5.3	389.1636	389.1626	7.83	8
5	Cetirizine	J.	M+nH+2			0.358	0.353	1.2 🗸	M+	H C22H28CI	N2031+	0.61	-0.32	-0.	82 5.7	391.1605	391.1602	7.83	8
								10									1		
hre	matogram 22 🗼 M	lass Spectrum					() ^	Q 🕰 🛃 🛊 🕸 🕸	• * • 🗵	atch Statistic	Graph 23								8 =
10 ⁵	- pQC100ppb-1_R/ Cetiricine - CalHa	12_01_6767 			\$					_				Cetiri	zine				
	165 - 165.070				ĩ					° - 🖸		(D						0
1	5 - 201 - 201.047 (*) 389 - M+nH (*) (r) 301 - M+nH+2 (*)	q)							Area	0.6 -									
1	-									0.2 -									
	-									0.0		1.5	2 2	5	1	3.5		4.5	5
0															Analysis				
0	1			Δ.	ALL .														

Quanpedia : 110 suspects

List of 30 relevant compounds for confirmation

Selection criteria :

- Compounds found in sludge and at least one of the agricultural inputs
- Presence in several extracts of the same matrix
- Intensity of chromatographic peaks

Micropollutants in the environment

Confirmation by adding standards in the extracts and matching chromatographic and mass spectrum criteria

Extraction efficiency

50 ml

45 -

40-

35-

30 -

25 -

20 — 15 —

10-

7.5

5.0-

23/35 : >75% all: >45% Labelled standards 7/10 >90%

Limits of detection and quantification

90% LOQ < 10 ng/g Consistent with trace analysis in environmental matrices

Boue Lisier Fumier

Boue Lisier Fumier

Results

Application of the targeted method to 6 sludge, 5 slurry and 2 manure

Conclusions: micropollutants in complex matrices

Advantages and disadvantages of different analytical strategies

- Target: only known compounds
- Untarget: limited data base

Difficulty in determining the origin of micropollutants

- Top-down
- Bottom-up

Prioritisation of contaminants

- Chemistry-driven
- Statistic-driven
- Metabolomic

. . . .

TRACES group

Alexandre Guironnet PhD

« Développements analytiques autour du couplage chromatographie liquide-spectrométrie de masse pour la quantification des composés vétérinaires présents à l'état de traces dans des matrices complexes environnementales »

RISMEAU project

Fundings

INRA

