TUNTWIN's Workshop

Session A: Basics in Synchrotron Techniques for Environmental and Food from Basics to Application

Funded by the Horizon 2020 Framework Programme of the European Union under the GA N° 952306

Session: Introduction to Synchrotron Radiation

Beam quality factors that affect the performance of a beamline (and your measurements).

Roberto Boada

http://www.synchrotron-soleil.fr/Presse/Videos/Lumieres-de-SOLEIL Synchrotron SOLEIL (illustration by Aurelie Bordenave)

Overview of the factors that affect the quality of the measurements

Beam quality factors

Intrinsic beamline/SR facility parameters:

- Brilliance/photon flux
- Energy resolution
- Harmonics and mirrors
- Drifts and vibrations
- Beam homogeneity
- Set-up reproducibility

Polarization of the beam

Other factors

Not-beam related parameters:

• linearity of the detectors

User defined parameters:

- Energy (fixed/range)
- beam-size
- collection time
- sample homogeneity/representativity

Radiation damage

Intrinsic parameters: brilliance/photon flux

X-ray Free Electron Lasers A Revolution in Structural Biology, Springer Nature (2018), DOI: 10.1007/978-3-030-00551-1

K. Zhukovsky, INTECHOPEN (2016), DOI: 10.5772/64439

The **monochromator** selects "one" wavelength/energy from the broad band radiation generated by the SR source

nλ[Å] = 2d[Å]sinθ _B	Bragg's Law: tells you what wavelength is passed at θ_{B}
E[keV]= 12.39854/λ[Å]	Conversion between x-ray energy and wavelength

grating monochromator (soft X-rays)

double-crystal monochromator (hard X-rays)

https://www.cells.es/en/beamlines/bl22-claess

Heat bump (thermal deformation of the surface)

Intrinsic parameters: scanning energy

If the flux is to be maximized all while scanning the energy, the undulator gap must change as the energy is scanned.

Geochimica et Cosmochimica Acta 142, (2014) 535-552

Intrinsic parameters: energy resolution (polychromators)

Intrinsic parameters: harmonics and mirrors

T. Matsushita (2009) Cheiron School, Spring-8, Japan

The sample will interact differently with high energy photons and the linearity might be compromised.

https://www.diamond.ac.uk/Instruments/SpectroscI20opy/I20/XAS_XES_Branchline/Specification.html

Intrinsic parameters: harmonics and mirrors

It is important to <u>reduce the **slope errors**</u> on the mirrors surface to get the appropriate beam collimation and beam focusing.

θ _c [°] = 1.6 λ[Å] √ρ [g/cm³]	Critical angle for mirror reflection of x-rays
$R_{m}[m] = (2/\sin\theta)[F_{1}F_{2} / (F_{1} + F_{2})]$	Bending radius for meridional focus
$R_s[m] = R_m \sin^2 \theta$	Bending radius for sagittal focusing
$M = F_2/F_1$	Magnification (demagnification) factor definition

Intrinsic parameters: drifts and vibrations

Correlation between the temperature of the optics hutch and the vertical position of the X-ray beam at the sample point.

Intrinsic parameters: beam homogeneity and beam focus

The beam might be focused or unfocused depending on the application, sample homogeneity (grain size, thickness and heterogeneity), radiation damage... however, a stripped or patterned beam is usually not the best choice...

Intrinsic parameters: set-up reproducibility

Sources of uncertainty:

- > Compensation mechanisms of mirrors (sagittal compensation, benders)
- > Mirrors angular alignment
- > Alignment of X-ray monochromator
- Harmonic content
- > ID gap and monochromator synchronization

Gas ionization detectors ("ionization chambers")

Gas soluction:

 μ = absorption coefficient, ρ = density

Energy-loss values for various gasses:

$1 \cdot 21 \in 0 \times 10^{-1}$	Gas selection.
N ₂ . 54.0 eV/e	< 5 KeV: He
Ar: 26.2 eV/e⁻	5 – 15 KeV [.] N2
Air: 22.7 eV/e⁻	> 15 keV: N2
He: 41.5 eV/e	

Gas ionization detectors ("ionization chambers")

Voltage applied – linear scale

Doug Sim https://en.wikipedia.org/wiki/lonization_chamber

Solid State detectors (semiconductors)

Semiconductor material (e.g. crystal of Si or Ge) with X-ray transparent contacts, applied electric field depletes bulk of thermally generated free charge.

- photoelectric conversion of an X-ray creates 'hot' electrons which rapidly thermalize (~psec),

- hole, electron charges drift in applied field towards electrodes
- electrical signal develops while the charge drifts in the bulk

the angular momentum of a circulating electron is

defined according to the right hand rule

Circular and linear polarization rate: vertical angular distribution

Helical undulator: permanent magnets (short periods)

Helical undulator and kicker magnets

Uses of X-ray polarization...

X-ray magnetic circular dichroism (XMCD)

Polarized XAS

J. Yano et al., Photosynth Res (2009) 102:241–254

User defined parameters

- Energy (fixed/range)
- beam-size (μm mm)
- collection time (μ s s)
- sample homogeneity/representativity

Radiation damage

Photoreduction

Radiation damage

Macromolecular crystallography (MX)

"Collection before destruction"

Radiation damage

Macromolecular crystallography (MX)

Cryogenic temperatures

Automatic loading

TUNTWIN's Workshop

Merci! Thank you! ¡Gracias!

CONTACT DETAILS:

Roberto Boada

Associate Professor

Chemistry Department, Science Faculty Campus UAB, 08193, Bellaterra Barcelona, Spain.

Tel.: 0034 93 581 4638 Email: <u>roberto.boada@uab.cat</u>

