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Synchrotron based X-ray diffraction: Introduction

What is diffraction?

X-rays scattered by a set atoms produce X-ray radiation in all directions, leading to
interferences due to the coherent phase differences between the interatomic vectors
that describe the relative position of atoms.

Bending of waves around the corners of an obstacle or through an aperture into the
region of geometrical shadow of the obstacle/aperture



Synchrotron based X-ray diffraction: Introduction

How it works? Bragg’s Law

“Crystals, at certain specific wavelengths and incident angles, produce intense peaks of

NnA= 2d sinB

= 26 = angle between incident and reflected beams
* d = spacing between planes

* A =wavelength

* n = order of diffraction
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Synchrotron based X-ray diffraction: Introduction

How it works? Bragg’s Law

Each Bragg reflection (hkl) is associated to a plane of
atoms as described by crystallography.
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Synchrotron based X-ray diffraction: Introduction

Single crystal X-ray diffraction
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Synchrotron based X-ray diffraction: Introduction

Powder X-ray diffraction
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Synchrotron based X-ray diffraction: Introduction

Powder X-ray diffraction

» Peak position 28, ,;:
= information on overall periodical arrangement of
atoms
» Peak intensity I,
= Type of atom in material
= Position (X, y, z) of atoms in the structure (unit cell)
» Peak FWHM,

Polycrystalline

= Microstructural features "o
o Strains ,, ~
o Size \ .
o Stacking faults .
O stretched rqi:vgs / dots

N. E. Widjomarko. Coatings 2016, 6(4), 54. doi.org/10.3390/coatings6040054

2D detector Area observed by
a 1D detector

" Area observed by
a point detector

Amorphous

no special feature
Az

Single Crystal
dots
9z

Axy

Textured
partial rings
Az

10



Synchrotron based X-ray diffraction: Introduction

Powder X-ray diffraction

Typical applications:

» Qualitative and quantitative phase analysis
» Structural analysis

» Stability and phase transitions

» Microstructure (crystalline size, microstrains)

> Microdiffraction
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Synchrotron based X-ray diffraction

> Why use synchrotron radiation?
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Synchrotron based X-ray diffraction: Why use synchrotron?

Main Characteristics

» High intensity
» High monochromaticity

» Wavelength can be varied between experiments

Advantages

» High signal-to-noise ratio
» High angular resolution

» High speed of data collection
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Synchrotron based X-ray diffraction: Why use synchrotron?

Sample environments

» FMB Oxford hot air blower

» Oxford cryostream 700 series

» Dynaflow liquid He cryostat

» Capillary flow cell

» Equipment for the electrochemical studies s

> On-line pressure calibration set-up (ruby |
lumiscence method)

» BETSA external ring heater

» External heating vacuum system

» |HE cryostat

» Navitar 12X online visualization system

https://www.albasynchrotron.es/en/beamlines/bl04-mspd/sample-environments
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Synchrotron based X-ray diffraction: Examples
1. X-ray Total Scattering Study of Phases Formed from Cement Phases Carbonation
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Figure 2. Synchrotron X-ray total scattering functions, S(Q), for the studied cement samples.
The patterns were normalised with respect to their highest diffraction peaks and vertically
displaced for adequate visualisation.

A. Cuestas, et al. Minerals 2021, 11(5), 519; doi.org/10.3390/min11050519
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Figure 3. Selected low angle ranges (intensity vs 28) of the synchrotron Rietveld plots (A =
0.41 A) for (a) Y-A_hyd, hydrated for 1.5 months and (b) Y-A_carb paste after carbonation for
80 days at 3% of COs (T = 20 °C and RH = 65%). The top pattern contains crystalline
ettringite and very broad diffraction peaks of nano-gibbsite. The main peaks are labelled. Top
pattern: ettringite (E) and nanocrystalline-gibbsite (ne-G). Bottom pattern: aragonite (A),
bassanite (B), nanocrystalline-gibbsite (ne-G) [including their (hkl) indexes].
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Synchrotron based X-ray diffraction: Examples

2. Operando Synchrotron X-ray Diffraction in Calcium Batteries: Insights into the Redox
Activity of 1D Ca,CoMO, (M = Co and Mn)
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Figure 3. Sample holder with four coin cells to be simultaneously monitored operando, single coin-cell image, and an exploded view of a coin cell.

A. P. Black, et al. Energy Fuels 2021, 35, 13, 10898—10907. doi.org/10.1021/acs.energyfuels.1c01343 v



Synchrotron based X-ray diffraction: Examples

2. Operando Synchrotron X-ray Diffraction in Calcium Batteries: Insights into the Redox
Activity of 1D Ca,CoMO; (M = Co and Mn)
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Figure 4. Potential vs capacity profiles from GCPL experiments on
Ca;Co,0,//AC cells using Ca(BF,); in EC/PC as the electrolyte at
RT and C/30 rate (a), corresponding SXRD patterns (b) and zoom-
in images (c,d), selected patterns correspond to the first and last
pattern of cell (A) in black and light red, last oxidation and last
reduction of cell (B) in red and dark green, and last ex situ pattern cell
(B) in blue. (e,f) Zoom-in images of reflections 100 and 300 of in situ
SXRD patterns of cells (A,B), respectively.
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A. P. Black, et al. Energy Fuels 2021, 35, 13, 10898—-10907. doi.org/10.1021/acs.energyfuels.1c01343 18



Synchrotron based X-ray diffraction: Examples

3. Structural evolution, optical gap and thermoelectric properties of CH;NH;SnBr, hybrid
perovskite, prepared by mechanochemistry
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Fig. 2 (a) Thermal evolution of the (100) and (220) cubic lines from synchrotron diffraction. (b) Observed (circles), calculated (full line) and difference
(bottom) Rietveld profiles for MASnBr; for SXRD data at 160 K. (c) Final crystal structure after Rietveld refinement at 160 K. (d) Evolution of the unit-cell
parameters at different temperatures. The upper colour bars correspond to the calorimetric regions |, Il and lIl.

C. A. Lopez, et al. Mater. Adv., 2021, 2, 3620. DOI: 10.1039/d1ma00196e 19



Synchrotron based X-ray diffraction: Examples

4. Determination of the Crystal Structures in the A-Site-Ordered YBaMn,O, Perovskite
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Figure 2. Details of the SXRPD patterns showing (a) the changes of the splitting in main diffraction peaks, indicating a unit cell change, and (b) the
occurrence of different superstructure peaks at different temperatures. The asterisk marks the main peak of the secondary phase Y,0; (0.3% in
weight). (c) Temperature dependence of selected superstructure peaks. The subscript T in all panels indicates that indexation of the peaks is
related to the parent tetragonal cell.

J. Blasco, et al. J. Phys. Chem. C 2021, 125, 35, 19467-19480. doi.org/10.1021/acs.jpcc.1c04697 20



Synchrotron based X-ray diffraction: Examples

5. Crystal Structure of BaCa(CO,), Alstonite Carbonate and Its Phase Stability upon

Compression
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Figure 4. Powder XRD patterns of BaCa(CQ;), alstonite at different
pressures. The pattern of the recovered alstonite sample is shown on
top. Asterisks denote the diffraction maxima of copper, the internal

pressure gauge.

R. Chulia-Jordan, et al. ACS Earth Space Chem. 2021, 5, 5, 1130-1139. doi.org/10.1021/acsearthspacechem.1c00032
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Synchrotron based X-ray diffraction: Examples

6. Unveiling the Structural Behavior under Pressure of Filled M, ;Co,Sb,, (M =K, Sr, La,
Ce, and Yb) Thermoelectric Skutterudites
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Figure 3. Synchrotron X-ray diffraction patterns of [JCo,Sb,, under 7.0 GPa (a) and 11.9 GPa (c). Details on the pressure evolution of Sb metal
secondary phase (b), showing its phase transition from a rhombohedral (S.G. R3m) to close-packed hexagonal (S.G. P6,/mmc) phase around 9.4
GPa.

J. E. F. S. Rodrigues, et al. Inorg. Chem. 2021, 60, 10, 7413-7421. doi.org/10.1021/acs.inorgchem.1c00682 22



Synchrotron based X-ray diffraction: Examples
7. Discriminating the origin of calcium oxalate monohydrate formation in kidney stones
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via synchrotron microdiffraction
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Fig. 4 2D-pXRD images of four representative points from calcium 3 i
oxalate kidney stones, namely COM (top-left), COD (top-right), TRA 5
(bottom-left) and MIX (bottom-right). &
15000 4. w
Fig. 5 Representation of the azimuthal plots for three samples, one representative of COM (top. 523). one representative of TRA (middle, 5264) and 10000 3

a test sample (bottom, 533). at reflections 100 and 040, left and right panels, respectively. The aorange square (bottom of each plot) represents the =
resin where the stones are embedded, and the red dotted lines represent the two regions characterized as COM. The separation between points is 5000 4
300 au. on the y-axis.
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I. H.Valido, et al. Analyst, 2022, 147, 349. 10.1039/d1an01703a 23



Synchrotron based X-ray diffraction: Examples

8. Synchrotron X-ray microdiffraction to study dental structures in Cretaceous
crocodylomorphs
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Fig. 3. Two-dimensional X-ray Dilfraction (2D-XRD) patterns of the fossil tooth G2-W-016 (A), in the enamel (left) and the dentine (right). The enamel point is located at 70 pm and
the dentine at 200 pm from the surface. Powder diffraction patterns obtained from the 2D-XRD data of the same tooth (B). 2D-XRD patterns of the modern tooth KD6G (C), in the
cnamel (left) and the dentine (nght ). The enamel point is located at 120 pm and the dentine at 600 pm from the surface. Powder dilfraction pattems obtained from the 2D-XRD data
of the same tooth (D).

24

O. Vallcorba, et al. Cretaceous Research 128 (2021) 104960. doi.org/10.1016/j.cretres.2021.104960



Synchrotron based X-ray diffraction: Examples

8. Synchrotron X-ray microdiffraction to study dental structures in Cretaceous
crocodylomorphs
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Synchrotron based X-ray diffraction: Examples

9. The color of the circus mosaic from Barcino (Roman Barcelona): Characterization,
provenance and technology issues
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Figure 1. In the center, a general view of the Circus mosaic, and the smaller surrounding
20 angle ()

images illustrate the zoomed parts to identify the numbered tesserae in their original locations b
before their extraction. )

Figure 11. Representative diffractograms obtained by SR tts-uXRD from the crystalline
features found within the green glass tessera #12: (a) POM image in RL mode with several
highlighted colored rectangles, also shown as insets in the diffraction patterns, where the
corresponding irradiated areas are marked with circles: ((right) grayish reflectance crystals
including malayaite (mly) and cassiterite (cst), (bottom-left) pore filling including cerussite
(cer) and calcite (cal); (bottom-right) reddish relict clod including quartz (gz), hematite (hm),
diopside (dio) and cordierite (crd)). (b) POM image in RL mode with a highlighted rectangle,
also shown as an inset (along with the equivalent SEM image) in the diffraction pattern on the
right, where the corresponding irradiated area is marked with a circle, they correspond to
yellowish reflectance crystals of cubic PbSnOs5.

L. Casas, et al. Minerals 2021, 11(7), 746; doi.org/10.3390/min11070746
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