Basis of radiation-matter interaction process.

Marc SIMON

Laboratoire de Chimie Physique Matière et Rayonnement, CNRS and Sorbonne Université, Paris, France.

marc.simon@sorbonne-universite.fr

Three main processes of EMR interaction with matter

Absorption:

• Converts radiative energy into internal energy.

Emission:

• Converts internal energy into radiative energy.

Scattering:

• Radiative energy is first absorbed and then radiated.

Elastic scattering

- No exchange of internal energy of the medium with the radiated field
- No change of frequency of incident wave upon scattering

Inelastic scattering

• Involves exchange of internal energy of the medium with that of the radiated field.

Brief overview of the interaction photons-matter

Synchrotron pulse duration few tens of picosecond

XFEL ideal tool for femto and even subfemtosecond Time-Resolved experiments (Pump-Probe)

A-MATO/ WALLER INTERAUTIONO

3446

sille

January 16 to 18, 2023

TUNTWIN Project

"WORKSHOP PROGRAM" Session A: Basics in Synchrotron Techniques for Environmental and Food From Basics to application

DAY 1: Monday 16 th January 2022		DAY 2 Tuesday 17 th 2023		DAY 3: Wednesday 18th 2023	
Introductory session		Spectroscopy techniques session		X-ray imaging techniques session	
	Introduction to synchrotron radiation. Historical overview about X-ray production: from X- ray tubes to modern synchrotrons and X-ray free electron lasers. Brief introduction about synchrotron radiation (SR) light generation. Parts of	9:00-10:30h	X-ray absorption/emission spectroscopy XAS, XRF; micro and nano applications Teacher: <u>Roberto Boada</u> UAB Spain	9:00-10:00h	Scanning X-ray microscopy Teacher: <u>Roberto Boada</u> UAB Spain
9:00-11:00h	the synchrotron. Properties of SR light that makes it unique (high brilliance, broad energy spectrum, polarization, pulsed time structure). SR sources and XFELs around the world (in Europe and closer to the Mediterranean basin).	10:30-11:00h	Coffee break	10:00-11:00h	X-ray tomography Teacher: <i>Roberto Boada UAB Spain</i>
		11:00-12:30h	X-ray photoemission XPS principles and applications		
			Teacher: <u>Marc Simon</u> LCPMR France	11:00-11:30h	Coffee break
11:00-11:30h	Coffee break				How to apply for getting beamtime at the
11:30-12:30h	Basis of radiation-matter interaction process	12:30-14:00h	Lunch break		Brief introduction of how to access the synchrotron
11.50 12.5011	Teacher: <u>Marc Simon</u> LCPMR France	14:00-15:00h	Fourier transform infrared (FTIR) Teacher: <u>Iris H. Valido</u> UAB Spain	11:30-13:00h	(academic, industrial), how to apply for getting beamtime (calls, contact with beamline manager in advance, steps for proposal submission), and how to write a good proposal for beamtime application.
12:30-14:00h	Lunch break				
	Overview of the different families of synchrotron	Sca	ttering and diffraction techniques session		Teacher: Iris H. Valido UAB Spain
	iffraction, imaging).	15.00-16.00h	X-ray diffraction		
14:00-15:30h	Teacher: Iris H. Valido UAB Spain	15.00 10.001	Teacher: <u>Iris H. Valido</u> UAB Spain	13:00-14:30h	Lunch break
	Beam quality factors that affect the performance of	16:00-17:00h	X-ray scattering (SAXS and WAXS)	14:30-16:30h	Round table and discussion on specific scientific cases from the participants.
15:30-16:30h	a beamline. Brilliance, photon flux at sample, resolving power, harmonics, variable polarization		reacher. <u>Roberto Boutua</u> OAB Spuin	16:30-17:00h	Closing remarks
	Teacher: <u>Roberto Boada</u> UAB Spain	Organized	INTERIOR INTERIOR		At: INSTITUT

Jožef Stefan Institute

cnrs

UMB

Adera

Soutenir les ecteurs de l'innovetion

Funded by the Horizon 2020 Framework Programme of the European Union under the grant N° 952306

X-ray - matter interaction (discrete transitions - photoionization)

Very low cross section for Valence electron – x-rays interaction

Electronic transition to consider : promotion of an 1s electron to an empty Molecular Orbital below threshold

Above the K shell ionization threshold: photoionization

The Co K-edge XANES structure of the CoCat (blue) and two references: [CoII(OH2)6](NO3)2 (black) and [CoIII(NH3)6]Cl3 (red).

Spectroscopies

IR

UV

X-rays (soft x-rays (50-1000 eV), hard x-rays (1 keV – 1 MeV)

Absorption spectroscopy (EXAFS (local structure), XANES (speciation))

Photoionization (XPS, HAXPES, ARPES)

Auger spectroscopy

X-ray emission spectroscopy, Resonant Inelastic X-ray scattering (RIXS)

Radiation damage

Auger emission constant with x-ray energy Allows to study doubly ionized state by measuring only one electron

Radiation damage Tin shielding

Constant with x-ray energy

X-ray emission

Elastic scattering

X-Ray Diffraction. Very important method to determine protein structures

Pair Distribution Function Analysis. Analytical technique which provides structural information from disordered materials by using the complete powder X-ray Diffraction pattern. \rightarrow Long range orders of the atoms can be deduced. Technic used for amorphous, poorly crystalline, nano-crystalline or nano-structured

Scattering. Short-range orders can be deduced. SAXS or diffuse scettering

Compton scattering

Arthur Compton Physics Nobel prize 1927

Inelastic scattering of x-rays by free electrons

Scientific thematic declining and coming up again thanks to gas phase measurements

Coincidence between scattered electron and ion through reaction microscope.

Momenta of ion and electron measurements allow to determine the momentum of the scattered photon.

M. Kircher et al., Nature Physics 16 56 (2020)

Brief overview of the interaction photons-matter

Synchrotron based microprobe techniques

Brief overview of the interaction photons-matter

