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Abstract: The aim of this study was to investigate the levels of trace elements in olive oils from differ-
ent locations and their use for geographical authentication. Concentrations of seventeen elements
were determined in a total of 42 olive oils from Tunisia, Spain (Basque country), and southern France,
and in nine soil samples from Tunisia by quadrupole inductively plasma mass spectrometry. The com-
pilation of appropriate techniques integrated into the analytical procedure achieved a precision (RSD)
between 2% and 15% and low limits of detection (between 0.0002 and 0.313 µg kg−1). The accuracy
of the analytical method applied for olive oil analysis was evaluated using SRM NIST 2387 Peanut
butter. The recoveries obtained after microwave-assisted digestion for the certified elements ranged
between 86% and 102%. Concentrations of non-certified elements (V, Cr, Co, Ni, Ba, Rb, Sr, Cd, Pb,
and As) were presented. The use of Pearson correlation applied on paired Tunisian oil/soil samples
has shown that several elements (Mg, Mn, Ni, and Sr) were significantly correlated. The multivariate
statistics using principal component analysis have successfully discriminated against three studied
origins. The most significant variables were the elemental concentrations of Cu, Cr, Fe, Mn, Sr, V,
and Zn. This study shows the potential of applying trace elements profiles for olive oil geographical
discrimination.

Keywords: olive oil; inductively plasma mass spectrometry; soil; trace elements; principal component
analysis; geographical discrimination

1. Introduction

Olive oil is a natural food product largely consumed throughout the world. Its excep-
tional taste, its innumerable health benefits, and its nutritional value have made it a widely
appreciated product [1,2]. The countries of the circum-Mediterranean basin, which are char-
acterized by a climate favorable to olive growing, are the largest producers and exporters of
olive oil, mainly Italy, Spain, Tunisia, and Greece. In Tunisia, in particular, the olive oil pro-
duction sector represents a major economic resource for the country and is a strategic axis
in its policy towards exportation, mainly towards the European community. Indeed, more
than 75% of its olive oil production is mainly oriented towards exportation [3]. In recent
years, Tunisian olive oils have been exported more and more in packaged bottles. Its policy
is oriented towards the enhancement of this product and improving competitiveness in
the international market. As a start, Tunisia has recently obtained a quality label, “The
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Appellation d’Origine Contrôlée” (AOC) olive oil of Teboursouk (3 March 2020, records of
the World Intellectual Property Organization (WIPO)). Nevertheless, the proportion of oil
packaged for export remains low, and Tunisia is hoping to double its packaged oil exports
in the next five years applying the Hazard Analysis and Critical Control Point (HACCP)
management system [4].

Tunisian olive oil exports are largely destined for the European Union; 97% of Spain’s
extra-EU import of olive oil and 91% of France’s are Tunisian (International Olive Council,
IOC). Therefore, ensuring the authenticity of olive oil is of general concern. The exports
are mainly sent out in bulk (98%), opening the prospect of fraudulent practices [5]. Indeed,
olive oil is now one of the most counterfeited food products [6,7]. This seemed to prompt
the country’s awareness of the danger that threatens one of its flagship products. Between
the early 90s and the year 2018, the number of articles that deal with the varietal or
geographical origin of olive oil has increased exponentially, going from a few dozen articles
to over 240 papers [8]. This increase is explained by the growing interest in this topical issue
and also by the considerable development in the analytical field, allowing access to high
precision and sensitive instruments. The analytical techniques used for the detection of
oil adulteration are diverse. Besides organic oil components determination, trace elements
analysis associated with chemometrics was successfully employed for oil geographical
traceability issues.

In general, trace elements represent a good geographical tracer as they are naturally
present in the soil at variable concentrations. They are absorbed through the roots and
transferred to the aerial parts of the plant by translocation [9]. Their distribution in the final
product then reflects the elemental signature of the soil of origin. Limited interest has been
given to the influence of other factors interacting with the plant or with the final product,
such as the extraction process of the olive oil or agricultural practices [10,11]. However,
elements such as chromium, cadmium, and lead can be incorporated into the oil during its
extraction, reflecting the manufacturing and packaging process [12].

Geographical authentication studies carried out on olive oil are gradually increasing
but remain limited. Indeed, olive oil is a complex lipid matrix, especially with regard to its
introduction into plasma-based instruments. It is characterized by a high organic content
that requires advanced conditions to destroy the matrix, and incomplete mineralization
leads to inaccurate concentration determination, interferences and can induce plasma
extinction. Furthermore, trace elements are present in olive oil at low concentrations,
sometimes below the limits of detection [13,14]. The detection technique most often used is
inductively coupled plasma mass spectrometry (ICP-MS) due to its high sensitivity [15–19],
and to a lesser extent, inductively coupled plasma atomic emission spectroscopy (ICP-
OES) [20,21], graphite furnace atomic absorption spectroscopy (ETAAS/GFAAS) [22,23],
and flame atomic absorption spectroscopy (FAAS) [24] are employed.

Most of the sample preparation techniques used are based on destructive methods
of organic matter prior to spectroscopic analysis. Mineralization in a microwave oven has
been the most used due to the ease of implementation, high recoveries, and destructive
efficiency of this apparatus [17,25–29]. Several extraction methods were also developed
based on the affinity of the elements with the extraction phase without having to destroy
the organic matter [15,24,30–32]. Nevertheless, the recovery percentages of the extraction
methods remain limited due to the complex organic structure of olive oil from which metals
are difficult to extract. Other studies have adopted emulsion techniques as an alternative,
but these are difficult to implement, especially in terms of maintaining the stability of
the emulsion [21,33].

The application of multivariate statistical methods, mainly principal components
analysis (PCA) and linear discriminant analysis (LDA) applied on the mineral content al-
lowed the discrimination between food products and raw materials at different production
lines [34], from different types of plants [35] and from different geographical origins [36].
In particular, olive oils were classified with variable resolutions according to their origin on
the basis of several elements contents [25,26,37].
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In the present study, we describe a method for accurate and precise trace element
concentration determination in olive oils from Tunisia, France (southern France), and Spain
(region of Basque country). To the best of our knowledge, very limited studies have studied
the multi-elemental composition of Tunisian olive oil so far, and these studies focused on
specific and limited geographical areas in Tunisia [10,26,38]. While it is characterized by
varied and heterogeneous geology, the soil composition must vary significantly in different
regions. For this reason, we have set as a first objective a sampling strategy that covers
various olive oil-producing locations across the Tunisian geography, even the lowest pro-
ductions for local consumption. For the samples preparation, we performed an innovative
approach based on a multi-stage sample preparation procedure that allowed the destruction
of the organic matter contained in olive oil in order to facilitate the analytes’ introduction
into the ICP-MS. The quality control of the applied analytical procedure was performed
using a standard reference material (SRM) NIST 2387 peanut butter. The recoveries were
calculated for the concentrations of the certified elements; the non-certified elements were
quantified with high precision and exclusively presented in this paper. The results obtained
in this study will allow the creation of a database for the multi-elemental profile of Tunisian
olive oils that can be useful for the quality assessment and the geographical characteriza-
tion. The second objective of this work was to verify the correlation between the element
concentrations in the soil and in the final product, which will allow the identification of
the potential sources of elements that constitute the fingerprint of the geographical origin.
Finally, the paper focused on the use of a common pattern recognition technique, the prin-
cipal component analysis, as a tool for the classification of the samples according to their
geographical origin.

2. Materials and Methods
2.1. Samples Collection and Preparation
2.1.1. Samples from Tunisia

Olive oil sampling: An extensive sampling campaign was conducted during the olive
harvest period between 2019 and 2020 in thirteen Tunisian governorates. A total of 25 olive
oil samples were collected as the following: sixteen packaged olive oils produced in oil
mills were obtained from local producers based in different regions in Tunisia, and nine
olive oils were extracted from olives collected in different olive orchards grown on different
soils. Olive oil extraction was performed at the laboratory of the Olive Tree Institute of
Tunisia (OTIT). Sampling locations are plotted on the geological map of Tunisia shown in
Figure 1.

Olive oil preparation: For the extra virgin olive oil (EVOO) samples extracted from the
olives collected, the following procedure was performed. About 4 to 6 kg of olives were
handpicked and then kept in the refrigerator for a maximum of 24 h before the oil was
extracted. The olive oil extraction method employed was the ABENCOR method (https:
//sistemaabencor.com/en/, accessed on 25 November 2021). It includes leaf stripping and
washing of the olives. Then, the grinding of the olives was performed in a hammer mill in
order to obtain an olive paste. The resulting olive paste was mixed for 45 min in a mixer.
During this step, a small volume of distilled water was added in order to facilitate the oil
droplets released from the paste.

During the mixing step, the temperature was controlled not to exceed 27 ◦C. The final
step was centrifugation. The olive paste obtained was introduced in a centrifuge system at
3500 rpm for 1 min. This allowed the separation of the dry pomace from olive oil, which
was mixed with the wastewater. The olive oil was then separated from the water by natural
decantation. All metallic surfaces in direct contact with olives, paste, and olive oil were
made of stainless steel and were carefully washed after each sample run. The obtained
olive oils were carefully transferred in brown glass bottles that had been previously washed
with distilled water and then stored away from heat and light.

https://sistemaabencor.com/en/
https://sistemaabencor.com/en/
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Figure 1. Sampling locations on Tunisian geological map.

Soil sampling: Under each sampled tree from the selected orchards, paired soils were
collected for multi-elemental analysis as well. A total of 9 soil samples were collected at a
depth of 60 cm using a pickaxe. This depth was selected since it was deep enough to avoid
soil with surface treatment procedures. Once collected, the soil samples were air-dried for
a few days and sieved through a 2 mm sieve. Then, 50 g were taken from each sample by
the quartering method.

2.1.2. Samples from Europe

Apart from Tunisian olive oils, EVOOs from European locations were obtained and
analyzed to compare their multi-elemental profile with that of the Tunisian ones. Seven
olive oil samples were obtained from different locations of the Spanish Basque Country:
Moreda, Lantziego, and Oion (province of Araba), and Añorbe, Mendavia, Cintruenigo,
and Arroniz (province of Navarre). Ten protected designation of origin (AOP) EVOOs
from southern France were also obtained from supermarkets (AOP Provence, AOP Nîmes,
AOP Nice, and AOP Nyons).

Table 1 summarizes the olive oil and soil samples’ geographical origins as well as
the number of samples. Information about the geographical location, cultivar, geological
formation, and applied agricultural practices are presented in Table 2.
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Table 1. Extra virgin olive oil and soil samples: geographical origin and number of samples.

Geographical
Origin Tunisia France (South) Spain (Basque

Country)

Samples EVOO
(produced in oil mill)

EVOO
(produced in OTIT)

Soil
(0–60 cm) EVOO EVOO

Number of samples 16 9 9 10 7

Table 2. Olive oil samples: geographical location, cultivar, geological formation, and applied agricul-
tural practices.

Country of Origin
(Number of

Samples)

Geographical Location
(Number of Samples) Sample Code Cultivar Bedrock (Mineralization) Agricultural Practices

Tunisia
(n = 25)

Tataouine
(n = 2)

T1 Zarrazi
limestones and marls nt

T2 Dhokkari

Sousse
(n = 2)

T3 Chemlali calcareous and gypsum
crusts

nt
T3A Chemlali

Mahdia
(n = 3)

T4 Chemlali
conglomerates, sand and

clay

Drop irrigation and use
of pomace residue as

an amendment
T4A Chemlali

T4A’ Chemlali

Sfax
(n = 2)

T5 Chemlali
Recent alluvium nt

T5A Chemlali

Kasserine
(n = 2)

T6 Arbequina sandstone and marl
nt

T12 ns limestones, dolostones,
marls and gypsum (Zn)

Nabeul
(n = 1) T7 Zarrazi ancient limestone and

gypsum alluvium nt

Kairouan
(n = 4)

T8 Chemlali ancient limestone and
gypsum alluvium nt

T8A Chemlali

T9 Chemlali
Recent alluvium Drop irrigation

T9A Chemlali

Jendouba
(n = 2)

T10 Chetoui clay-sandstone flysch
nt

T16 Chetoui clay-sandstone flysch (Zn
and Pb)

Ariana
(n = 3)

T11 Mixture of different
varieties

Recent alluvium nt
T11A Chemlali

T11A’ Chemlali

Beja
(n = 1) T13 ns ancient limestone and

gypsum alluvium nt

Monastir
(n = 1) T14 Mixture of different

varieties
conglomerate, sands and

clays nt

Tozeur (n = 1) T15 Mixture of different
varieties

conglomerates, sand and
clay nt

Siliana (n = 1) T17A ns Recent alluvium nt
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Table 2. Cont.

Country of Origin
(Number of

Samples)

Geographical Location
(Number of Samples) Sample Code Cultivar Bedrock (Mineralization) Agricultural Practices

Spain (Basque
country)
(n = 7)

Moreda Araba (n = 1) B1
A mixture of
Arroniz and
Arbequina

ns

Use of fertilizer
(15-15-15

NPK *; sheep and cattle
manure)

Añorbe (n = 1) B2
A mixture of
Arroniz and
Arbequina

ns ns

Mendavia
(n = 1) B3 Arbequina ns ns

Cintruenigo
(n = 1) B4 Arbequina ns ns

Lantziego
(n = 1) B5

A mixture of
Arroniz and
Arbequina

ns
Use of fertilizer

(15-15-15 NPK; sheep
and cattle manure)

Ablitas (n = 1) B6 Arroniz ns ns

Oion (n = 1) B7
A mixture of
Arroniz and
Arbequina

ns
Use of fertilizer

(15-15-15 NPK; sheep
and cattle manure)

France
(n = 10)

Nyons (n = 2)
FR1 ns

ns ns
FR3 ns

Baux-de-Provence
(n = 1) FR2 Mixture of different

varieties ns ns

Nîmes (n = 2)
FR4 ns

ns ns
FR7 ns

Nice (n = 2)
FR5 Cailletier

ns ns
FR6 ns

Provence
(n = 3)

FR8 Mixture of different
varieties

ns ns
FR9 Aglandau

FR10 ns

nt: no treatment; ns: not specified, * 15-15-15 NPK: a fertilizer containing equal parts of Nitrogen, Phosphorous,
and potassium.

2.2. Multielemental Analysis
2.2.1. Reagents and Chemicals

Sub-boiled nitric acid (69% Instra analyzed JT BAKER), hydrogen peroxide (30–32%
Optima, Fisher scientific, Illkirch, France), and Ammonium acetate (>98%, Sigma Aldrich,
Darmstadt, Germany) was used for samples preparation. All solutions were diluted using
ultrapure water (Milli-Q system, resistivity 18.2 MΩ cm, Millipore, Burlington, MA, USA).
Multi-elemental standard solutions CCS-4 and CCS-6 (Inorganic ventures, Christiansburg,
VA, USA) were used to build the external calibration curve. Mono-elemental solutions of Y,
Rh, and Ir were used as internal standards for ICP-MS measurements.

2.2.2. Olive Oil Mineralization

Prior to ICP-MS analysis, a multi-stage procedure was performed (Figure 2). First,
the organic matter contained in olive oils was destroyed through mineralization. Then,
the obtained mineralized solutions were subjected to evaporation to dryness, followed
by dissolution in the minimum volume required for analysis. Prior to the mineralization,
the olive oil samples were centrifuged at 3500 rpm for 5 min using a ROTOFIX32A (HET-
TICH, Atlantic Labo, Bruges, France) centrifuge in order to eliminate any pomace residue
according to previous recommendations [16]. Then a mass of 0.5 g of olive oil from the
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upper oil totally clear and not containing any pomace residue was carefully transferred
to quartz tubes previously cleaned following a strict cleaning protocol as follows: the
digestion tubes containing 50% nitric acid were placed in a microwave system (Ultrawave
SRC technology, Milestones, Sorisole (BG), Itlay) with a specific cleaning program. Then,
the tubes were washed in 10% v/v HNO3 and in 10% HCl successively and finally rinsed
with ultrapure water.

Foods 2022, 11, x FOR PEER REVIEW 7 of 21 
 

 

nt: no treatment; ns: not specified, * 15-15-15 NPK: a fertilizer containing equal parts of Nitrogen, 
Phosphorous, and potassium. 

2.2. Multielemental Analysis 
2.2.1. Reagents and Chemicals 

Sub-boiled nitric acid (69% Instra analyzed JT BAKER), hydrogen peroxide (30%–
32% Optima, Fisher scientific, Illkirch, France), and Ammonium acetate (>98%, Sigma Al-
drich, Darmstadt, Germany) was used for samples preparation. All solutions were diluted 
using ultrapure water (Milli-Q system, resistivity 18.2 MΩ cm, Millipore, Burlington, MA, 
USA). Multi-elemental standard solutions CCS-4 and CCS-6 (Inorganic ventures, Chris-
tiansburg, VA, USA) were used to build the external calibration curve. Mono-elemental 
solutions of Y, Rh, and Ir were used as internal standards for ICP-MS measurements. 

2.2.2. Olive Oil Mineralization 
Prior to ICP-MS analysis, a multi-stage procedure was performed (Figure 2). First, 

the organic matter contained in olive oils was destroyed through mineralization. Then, 
the obtained mineralized solutions were subjected to evaporation to dryness, followed by 
dissolution in the minimum volume required for analysis. Prior to the mineralization, the 
olive oil samples were centrifuged at 3500 rpm for 5 min using a ROTOFIX32A (HET-
TICH, Atlantic Labo, Bruges, France) centrifuge in order to eliminate any pomace residue 
according to previous recommendations [16]. Then a mass of 0.5 g of olive oil from the 
upper oil totally clear and not containing any pomace residue was carefully transferred to 
quartz tubes previously cleaned following a strict cleaning protocol as follows: the diges-
tion tubes containing 50% nitric acid were placed in a microwave system (Ultrawave SRC 
technology, Milestones, Sorisole (BG), Itlay) with a specific cleaning program. Then, the 
tubes were washed in 10% v/v HNO3 and in 10% HCl successively and finally rinsed with 
ultrapure water. 

 
Figure 2. The analytical procedure for olive oil preparation prior to ICP-MS analysis: (1) Centrifu-
gation; (2) Clear olive oil recovering; (3) Pre-digestion with H2O2; (4) Microwave assisted digestion; 
(5) Evaporation to dryness; (6) Re-dissolution in 2% HNO3. 

For the samples digestion protocol, 0.5 mL of 30% hydrogen peroxide was added to 
0.5 g of the olive oil to be mineralized. The mixture was left overnight for pre-mineraliza-
tion at room temperature. The next day, 5 mL of sub-boiled nitric acid (69%, Instra 

Figure 2. The analytical procedure for olive oil preparation prior to ICP-MS analysis: (1) Centrifuga-
tion; (2) Clear olive oil recovering; (3) Pre-digestion with H2O2; (4) Microwave assisted digestion;
(5) Evaporation to dryness; (6) Re-dissolution in 2% HNO3.

For the samples digestion protocol, 0.5 mL of 30% hydrogen peroxide was added to
0.5 g of the olive oil to be mineralized. The mixture was left overnight for pre-mineralization
at room temperature. The next day, 5 mL of sub-boiled nitric acid (69%, Instra Analysed
Reagent, J.T.Baker, Fisher Scientific, France) was gradually added since olive oil is a highly
reactive matrix. The final mixture was then digested in a microwave system (Ultrawave
SRC technology, Milestones, Sorisole (BG), Italy) following an optimized gradually in-
creasing heating program up to 250 ◦C where the temperature was maintained for 20 min
(P max = 110 bar). The resulting clear solutions were then transferred to clean PFA vials
(Savillex Corporation, Eden Prairie, MN, USA) and evaporated to dryness in a closed-
medium sample evaporation apparatus (Evapoclean 25 mL, Analab, 67,800 hoenheim,
France). The dry residue was finally re-dissolved in 5 mL of 2% sub-boiled nitric acid prior
to analysis. The total dilution factor obtained was then equal to ten.

2.3. Soil Extraction

Prior to ICP-MS analysis of the soil samples, only elements in the exchangeable fraction
of soil were extracted. A large array of analytical methods involving extraction procedures
has been published and extended, following the integrative work performed with the
former BCR three-step sequential extraction procedure on the validation of sequential
extraction techniques [39–41]. In this work, the soil extraction procedure was performed
following closely the method proposed by Ure et al. (2006) based on ammonium acetate
extracts [42]. Indeed, ammonium acetate is largely employed in soil extraction techniques
as it is known for its cation exchange capacity, exchangeable bases, and plant-available
nutrients extraction. Briefly, a volume of 3 mL of 1 M ammonium acetate at pH 7 was
added to 2 g of each soil sample to release elements in exchangeable fraction. The mixture



Foods 2022, 11, 82 8 of 21

was shaken for 16 h on a shaking plate (Edmund Buhler Shaker, D-72411 Bodelshausen,
Germany) then centrifuged at 3500 rpm for 5 min. The supernatant aqueous phase was
then carefully transferred using a pipette then diluted in 2% sub-boiled nitric acid prior to
analysis by ICP-MS.

2.4. Multielemental Analysis

The multi-elemental analysis of the obtained extracts from soils and oils was performed
using an ICP-MS Plasma Quant Elite spectrometer (Analytik Jena, 07745 Jena, Germany).
All samples were analyzed for a total concentration of 17 elements: As, Ba, Ca, Cd, Co, Cr,
Cu, Fe, K, Mg, Mn, Ni, Rb, Sr, Pb, V, and Zn. The instrumental operating conditions and
measured isotopes are presented in Table S1 (Supplementary Materials). The analysis was
performed using two operating modes: The standard mode where no gas was supplied into
the cell, and the integrated collisional reaction cell (iCRC) in the reaction mode where He
and H were used as collision gases into the cell, and the iCRC mode was applied in order
to reduce spectral interferences, including polyatomic interferences. The list of isotopes
detected for each operating mode is detailed in Table S1 (Supplementary Materials).

The calibration solutions at eight different concentrations ranging from 0.01 µg L−1 to
500 µg L−1 were prepared by appropriate dilution of multi-elemental standard solutions
CCS-4 and CCS-6. Yttrium (Y), rhodium (Rh), and iridium (Ir) at a concentration of
2.5 µg L−1 were used as internal standards for the low, medium, and heavy masses,
respectively, in order to correct instrumental drifts. Samples concentrations were calculated
after applying the corrections with the blank, the internal standard, and the analytical
blank. First, the calibration blank (2% HNO3 spiked with the internal standard) signal
was subtracted in order to ensure that the ICP-MS measurement provides a zero signal
when no analyte is present. Then, the instrumental sensitivity drifts were corrected by the
internal standard signal. Finally, an “analytical blank” (69% HNO3, H2O2) prepared using
the whole set of reagents was mineralized and underwent the same preparation procedure
as the samples under the same conditions. This blank reflects the potential contamination
that occurred during the whole samples preparation protocol, and it was subtracted from
the samples’ elemental concentrations in order to calculate the “true” concentration of each
element.

All labware was washed in 10% v/v HNO3 and rinsed with ultra-pure water before use.

2.5. Analytical Quality Control

The standard reference material NIST SRM 1643f (trace elements in water, National
Institute of Standards and Technology, Gaithersburg, MD, USA) was used for quality
control of the instrumental measurements. The NIST SRM 2387 (peanut butter, National
Institute of Standards and Technology, Gaithersburg, MD, USA) was used to evaluate the
accuracy of olive oil mineralization through recoveries of the certified elements. NIST SRM
2387 peanut butter was chosen since a natural vegetable oil certified for trace elements
concentrations is not available. Despite the fact that this matrix is not totally equivalent to
olive oil composition and viscosity, the chemical composition of this fatty acid-rich matrix
is very close to that of olive oil. For the non-certified elements (As, Ba, Cd, Co, Cr, Ni,
Pb, Rb, Sr, and V), a series of microwave-assisted mineralization were performed on NIST
SRM 2387 prior to ICP-MS analysis. The average concentrations for inter-day and intra-day
results obtained for these elements on the basis of 15 replicates are presented in Table 3.

In every mineralization run, a blank and a triplicate of NIST SRM 2387 were digested
and then analyzed. Recoveries for six certified elements concentrations (Cu, Fe, K, Mg, Mn,
and Zn) in NIST SRM 2387 were calculated as the ratio: (Measured concentration/Certified
concentration) * 100. The recoveries (R (%)) obtained after microwave-assisted digestion
were satisfactory, ranging between 86% and 102% (Table 3).

The limits of detection (LODs) and limits of quantification (LOQs) were calculated as
three times the standard deviation (SD) and ten times of SD on the basis of 10 blanks, re-
spectively. The obtained LODs and LOQs were significantly low (Table S2: Supplementary
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Materials): LODs were between 0.0002 and 0.313 µg kg−1 and LOQs between 0.0007 and
1.042 µg kg−1. Except for Cd in olive oil, all the measured concentrations were greater than
LOD and LOQ. Linearity was satisfactory; R2 was above 0.9995 for all analyzed elements.
The precision was evaluated through the relative standard deviation (RSD) and calculated
on the basis of olive oil triplicates. The RSDs were satisfactory; the values obtained were
low, ranging between 1% and 14% (Table S2: Supplementary Materials).

Table 3. Measured concentrations of certified and non-certified elements in NIST SRM 2387 peanut
butter and recoveries obtained for certified elements.

Elements Measured Concentrations ± SD
(mg kg−1)

Certified Concentrations ± SD
(mg kg−1)

R
(%)

C
er

ti
fie

d
el

em
en

ts
(n

=
3)

Ca 421 ± 6 411 ± 18 102
Cu 4.26 ± 0.06 4.93 ± 0.15 86
Fe 16.6 ± 0.3 16.4 ± 0.8 101
K 6130 ± 160 6070 ± 200 101

Mg 1696 ± 13 1680 ± 70 101
Mn 15.5 ± 0.2 16.0 ± 0.6 97
Zn 25.1 ± 0.3 26.3 ± 1.1 96

N
on

-c
er

ti
fie

d
el

em
en

ts
(n

=
15

)

As 0.13 ± 0.07 - -
Ba 1.43 ± 0.13 - -
Cd 0.051 ± 0.002 - -
Co 0.024 ± 0.002 - -
Cr <LOQ - -
Ni 0.78 ± 0.04 - -
Pb <LOQ - -
Rb 5.66 ± 0.23 - -
Sr 2.95 ± 0.10 - -
V <LOQ - -

2.6. Statistical Data Analysis

For the classification of olive oil samples according to their geographical origin (Tunisia,
Spain, and France), a multivariate analysis was performed using SIMCA V16.0.1. The Prin-
cipal Components Analysis (PCA) is an unsupervised method aiming to find new variables
called dimensions calculated from a covariance matrix of the original variables while pre-
serving as much as possible the statistical information (variability), allowing summary
and visualization of the information in large datasets. The samples classification was
accomplished by the PCA score plot, and the determination of the most discriminating
elements was conducted by the loadings plot. Spearman’s correlation was calculated for
the trace element concentrations in an exchangeable fraction of soil and corresponding
olive oils in order to verify the possible correlation between both. Spearman’s correlation
factors were calculated using OriginLab 2018.

3. Results and Discussion
3.1. Trace Elements Concentrations in Olive Oils

The trace elements determined in the olive oils analyzed presented a wide range of
concentrations ranging from less than 1 µg·kg−1 up to the range of mg kg−1. Table 4
presents the median and the ranges of concentration of 17 elements in olive oil samples
classified according to their geographical origin (Tunisia, Spain, and France). They were
compared to the concentrations reported in the literature. In general, except for Fe, all the
elements analyzed displayed slight but noticeable levels of concentration in all the olive oil
samples. The first group of elements includes those displaying the lowest concentration
ranges. They are As, Cd, Co, Pb, and Rb. These elements’ median concentrations were
less than 1 µg kg−1. They are the most difficult to detect in a complex matrix such as olive
oil due to the high organic load and viscosity for introduction in the ICP-MS with typical
nebulization.

Arsenic: The concentration of As obtained in Tunisian, Spanish, and French olive oils
analyzed were low, around 0.1 µg kg−1, and were notably lower than those reported in
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the literature. Indeed, the concentrations of As recorded varied between 0.05 µg kg−1 and
0.16 µg kg−1 in European oils and were between 0.06 µg kg−1 and 0.88 µg kg−1 in Tunisian
oils. These results were mostly in agreement with the concentrations previously reported
in Spanish olive oils [43] and were notably lower compared to other studies conducted on
oils from Tunisia and Italy [26,28].

Cadmium: The values obtained for Cd were below the LOD in all olive oil samples.
Cadmium is one of the major contaminants that can expose humans to health risks. It can be
absorbed by plants from the soil and then translocated to the edible parts of the plant, and it
can also be released to edible oils stored in tanks and plastic packaging (Ismael et al., 2019).
In most of the published studies, cadmium was either not analyzed or was not detected
in olive oil [31,44]. Otherwise, when quantified, concentrations of Cd varied between
0.001 µg kg−1 and 0.15 µg kg−1 [16,21,45,46].

Cobalt: The concentration levels of Co in Tunisian olive oils ranged from 0.03 µg kg−1 to
0.31 µg kg−1. The concentrations were similar to those reported for European oils, ranging
between 0.04 µg kg−1 and 0.17 µg kg−1. These concentrations were in full agreement with
the concentrations previously evaluated in Spanish and Italian olive oils [25,28,29].

Lead: The concentrations of Pb were 10 times higher than those recorded for Co
but were as well at low levels. In general, in the European oils, the concentrations of
Pb did not exceed 1.35 µg kg−1. These values were in agreement with those previously
reported results from Spain, Portugal, and France [15]. Slightly higher values were found
in oils from Tunisia. The highest value was equal to 2.16 µg kg−1, and this was found
in olive oil from Jendouba (T16) sampled near a Pb-Zn mining deposit (Table 2). Lead is
a hazardous contaminant that can be assimilated by plants and is then accumulated at
variable concentrations depending on the location of the Pb emission source [47]. These
relatively high values of Pb in the Tunisian oils were in agreement with recent results from
oils originating from four geographic locations (Monastir, Medenine, Gafsa, and Sfax). They
also displayed relatively high concentration levels, between 5 µg kg−1 and 7.4 µg kg−1 [26].
In this same study, concentrations of Rb and Sr were also investigated in olive oils.

Rubidium and Strontium: The rubidium reported concentrations ranged between
2.5 µg kg−1 and 3.5 µg kg−1 and were in agreement with the concentrations found in
the present study. However, the reported concentrations of Sr were relatively high, ranging
between 33 µg kg−1 and 37 µg kg−1, which is up to 30 times greater than the concentrations
found in this study. Both Rb and Sr concentrations varied significantly in Tunisian oils.

Table 4. Median values and ranges of concentrations (µg kg−1) of trace elements in olive oil samples
from Tunisia, Spain (Basque country), and southern France, and ranges of concentrations reported in
the literature.

Element Tunisia Spain (Basque Country) France Literature *

Cd <LOQ <LOQ <LOQ (0.001–0.15)
Co 0.09 (0.03–0.31) 0.07 (0.04–0.10) 0.07 (0.04–0.17) (0.023–11)
As 0.14 (0.06–0.88) 0.10 (0.09–0.14) 0.08 (0.05–0.16) (0.2–26.6)
Rb 0.35 (0.09–1.85) 0.55 (0.28–0.95) 0.66 (0.35–1.94) (0.036–2.6)
Pb 0.88 (0.57–2.16) 0.53 (0.28–0.94) 0.70 (0.47–1.35) (0.18–6.40)
Ba 1.21 (0.45–5.17) 1.28 (0.93–2.30) 1.61 (0.92–17.6) (0.31–12.3)
Sr 2.58 (1.18–5.04) 1.73 (1.21–2.11) 2.50 (1.00–3.55) (1.52–48.9)
V 3.25 (2.10–5.45) 1.14 (0.52–1.56) 0.77 (0.12–1.53) (4.2–5.8)

Mn 5.03 (3.58–17.3) 1.57 (0.96–2.70) 2.34 (1.08–3.71) (4.4–40)
Ni 3.50 (2.02–11.6) 2.65 (1.86–3.44) 3.88 (2.22–6.88) (5.95–173)
Cu 8.74 (3.62–23.5) 5.26 (3.10–11.1) 6.16 (4.40–6.55) (3.35–66.4)
Cr 10.3 (7.11–16.8) 8.48 (3.45–11.2) 14.4 (11.9–18.2) (15.4–437)
Zn 98 (39–195) 129 (100–152) 106 (33–138) (7–290)
Fe 1240 (169–1310) 102 (80.7–117) 129 (54.7–190) (67.5–1610)
Mg 208 (138–582) 226 (91.9–488) 368 (160–785) (223–1200)
K 534 (128–3740) 601 (214–2970) 527 (142–1530) (498–98,000)
Ca 1240 (610–2280) 942 (607–1990) 1080 (580–1640) (76–10,790)

* The literature data was collected from the previously reported results [10,15,16,18,26–28,30,31,33,38,43,44,48–51].
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The concentrations of Rb ranged between 0.09 µg kg−1 and 1.85 µg kg−1 and concen-
trations of Sr between 1.18 µg kg−1 and 5.04 µg kg−1. This variability is related to the varied
geology of Tunisian soil. Indeed, Rb and Sr contents are strongly linked to the geochemical
composition of the soil of origin [52]. This variation was less significant in the Spanish
and French olive oil samples. Indeed, compared to the large geographical distribution of
sampling performed in Tunisia, the samples from the Spanish Basque country and France
were obtained from a limited and restricted geographical area.

The second group of elements includes the elements occurring at medium concentra-
tions, ranging from a few µg kg−1 up to 100 µg kg−1. It includes Ba, Cr, Cu, Mn, Ni, Sr, V,
and Zn.

Barium: Ba is naturally present in the environment and is a non-essential element
for plant growth. The high concentrations of Ba in soil could be related to the geologi-
cal formation and also to contamination through industrial activities (paints, ceramics,
and glass) [53]. Ba concentrations ranged from 0.45 µg kg−1 to 5.17 µg kg−1 in Tunisian
oils. These values were lower than those reported by Damak et al., (2019) [26]. Similar
median concentrations were obtained in Spanish and French oils, respectively equal to
1.28 µg kg−1 and 1.61 µg kg−1. An outlier was recorded in the sample originating from
Nîmes, the concentration of Ba was equal to 17.6 µg kg−1. Such high barium concentrations
had been previously recorded in Spanish olive oils [29,33].

Chromium: Cr is also non-essential in plant growth and development but is assimilated
by roots with other essential elements [54]. Concentrations of Cr in Tunisian olive oils
varied between 7.11 µg kg−1 and 16.8 µg kg−1. Similar levels of Cr were found in the
other European oils analyzed and were all in line with the previously reported results from
Spain [50]. A wide range of concentrations was reported in the literature for Cr, from a few
tens of µg kg−1 levels up to hundreds of µg kg−1 [21,25,28,50,51].

Copper: Concentrations of Cu varied between 3.62 µg kg−1 and 23.5 µg kg−1 in
the Tunisian oil and were significantly greater than the values reported in the litera-
ture [38]. In the European oils, the concentrations of Cu ranged between 0.04 µg kg−1 and
0.17 µg kg−1 and were significantly low compared to the previous findings in Italy, Spain,
and Turkey [15,18,21,43,50,55]. The presence of Cu in the soils is necessarily related to the
natural geogenic background levels but could be altered by different cultivation processes
and, therefore, could be found at a wide range of concentrations.

Vanadium and Manganese: Both V and Mn are essential nutrients for plant growth and
development at low concentrations. Although there are sources of vanadium contamination,
such as metallurgical industry and mining activities, its composition in soil mainly reflects
that of the rocks [56,57]. In previous studies, vanadium was rarely analyzed in olive
oil and hardly detected due to its very low concentration [33]. In the present study,
the lowest value obtained was equal to 0.12 µg kg−1 and was 10 times higher than the LOD.
The concentrations of V in Tunisian olive oils ranged from 2.1 µg kg−1 to 5.45 µg kg−1.
Mn concentrations ranged from 3.58 µg kg−1 to 17.2 µg kg−1. Both ranges of concentrations
were in agreement with the previously reported results for Tunisian oils [26]. Lower
concentrations were found in the Spanish and the French olive oils since the concentrations
detected fluctuated between 0.12 µg kg−1 and 1.56 µg kg−1 for V and did not exceed
3.71 µg kg−1 for Mn. Both levels detected were in agreement with the previous results
reported in European oils [15,31].

Nickel: Median concentrations of Ni were similar in olive oils from the three different
origins ranging between 2.65 µg kg−1 and 3.83 µg kg−1. Very limited information is
available for levels of Ni in the Tunisian olive oils; we can only refer that the values
obtained from trees irrigated with treated wastewater presented higher levels of Ni [10].
Other published results from Spain and Italy also showed high concentrations ranging
between 10 µg kg−1 and 60 µg kg−1 [28,50]. In general, the presence of Ni in the soil is
mainly related to the parent rock composition; however, it can be accumulated in the plants
as a result of agricultural and industrial practices, and therefore, nickel would be found in
a wide range of concentrations in soil and similarly in olive oil [58].
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Zinc: Concentrations of Zn varied between 39 µg kg−1 and 195 µg kg−1 in Tunisian
oils. The highest values were recorded in the sample T16, sampled close to a Zn mining
site. Thus, the high concentrations of Zn in olive oil can be related to the direct uptake of
Zn from the polluted soil or to the indirect intake from dust Zn deposited on the leaves
that are translocated into the olive fruits [59]. Similar ranges were obtained in European
oils, ranging from 33 µg kg−1 to 152 µg kg−1. These results agreed most with reported
values in olive oils from Trentino, Italy [15] and from Tunisia [26]. Notably, higher average
concentrations were recently recorded in European olive oils, up to 492 µg kg−1 [18].

The third group of elements includes the elements occurring at relatively high con-
centrations from a few hundred µg kg−1 to the range of mg kg−1. It involves Ca, Fe, K,
and Mg. They are all necessary for plant growth and development.

Calcium and Potassium: Concentrations of Ca and K in Tunisian olive oils were in
agreement with those obtained from olive trees irrigated with treated wastewater [10].
This could be related to the source of irrigation water of our sampling locations. For the
European samples, concentrations of K were high in some samples from the Spanish Basque
country compared to French oils. This could be due to the amendment of olive trees in
Basque locations with NPK (Table 2). The concentrations of Ca in European olive oils were
found in comparable concentration ranges, between 580 µg kg−1 and 1990 µg kg−1. These
values were lower than those previously reported in Spain [29].

Iron: Concentrations of Fe in Tunisian samples ranged from 169 µg kg−1 to 1310 µg kg−1.
The median value was equal to 1248 µg kg−1. The highest values were obtained in olive oils
produced at OTIT using the Abencor extraction method. This relatively high concentration
of Fe was likely to be related to direct contamination by the extraction process of the olive
oil. Indeed, Zeiner et al., (2010) pointed out that the high metal content in olive oils could
be related to the production process [60]. Levels of Fe were much lower in European oils,
ranging from 54.7 µg kg−1 to 160 µg kg−1. These results were more in agreement with the
previously reported concentrations [18,28,50].

Magnesium: The concentrations of Mg in olive oils from Tunisia, ranging from 138 µg kg−1

to 582 µg kg−1, were lower than those previously reported [26]. Elemental Mg content in
European olive oils was in contrast similar to concentrations reported in different Spanish
locations [29].

This wide range of concentrations and the inter/intra-country variability is certainly
related to soil geochemistry and the possible contribution from cultural processes or an-
thropogenic activities.

3.2. Relationship between Olive Oil and Soil Elemental Content in Tunisia

The multi-elemental profile of the soil samples was determined, and the median,
as well as the range of elements concentrations, are presented in Table S3 (Supplementary
Materials). In order to evaluate the possible correlations between bioavailable elements
contents in soil and elements concentrations recorded in the paired olive oils, we performed
a correlation test. Pearson correlation coefficient was calculated for the soil exchangeable
fraction extracts and corresponding olive oil elemental composition.

The correlation coefficients were evaluated in nine Tunisian sampling locations (T3A,
T4A, T4A’, T5A, T8A, T9A, T11A, T11A’, and T17A), presenting different soils characteristics.
The results obtained are presented in Table 5 and highlight that, despite the limited number
of samples, only four elements (Mn, Ni, Mg, and Sr) out of seventeen presented a statistically
significant correlation between soil extracts and olive oil elemental content (p < 0.05).

Both Mg and Sr correlation coefficients, respectively equal to 0.78 and 0.85, indicated
a high positive relationship between their concentration in soil and in olive oil. Figure 3
displayed the strong correlation between the bioavailable Sr content in the soils and its
concentration in olive oils. The correlation coefficient for Mn (r = 0.63) indicated a positive
correlation. It has been shown that a significant amount of Mn assimilated by the olive tree
is retained in the olive leaves [61], which could explain the moderate correlation since olive
oil is obtained from the olive fruit. The Ni correlation coefficient (r = −0.8) demonstrated
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a high negative correlation. This indicates that the higher the concentration of Ni in the
soil, the less Ni is found in the olive oil. This might be related to the accumulation of Ni in
different organs of the plant [62].

Table 5. Pearson correlation coefficients and significance between soil and pared olive oil elemental content.

Element Pearson Correlation Coefficient (r) Significance (p-Value)

Sr 0.85 0.006
Ni −0.8 0.04
Mg 0.78 0.02
Mn 0.63 0.01
As −0.12 0.76
Ba −0.13 0.75
Ca −0.08 0.85
Cd nd nd
Co −0.42 0.29
Cr 0.03 0.93
Cu −0.25 0.54
Fe 0.02 0.94
K −0.32 0.44
Pb 0.08 0.84
Rb 0.57 0.13
V −0.56 0.14

Zn −0.42 0.29
nd: not detected.

Elements such as As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, V, Zn, Pb, and Rb are first derived
from geogenic sources, but most of them can also be originating from various anthropogenic
activities either via agricultural practices or during the olive oil extraction process including
storage. Their concentrations did not show any significant correlation between the soils
and the resulting produced olive oils (p > 0.05).

The accumulation of Fe in the olive tree merits a special mention. In this study,
we observed significantly high Fe contents in olive oils extracted in the OTIT applying
the Abencor extraction method compared to those produced in an oil mill. These findings
would suggest that the production process of olive oil could be a source of iron contam-
ination. During the Abencor extraction, olive oil is in direct contact with metal surfaces
made of stainless steel. Iron is the main constituent of stainless steel, and thus, it could
be transferred to olive oil during the extraction process. This is also the case of chromium
contents which would also indicate direct contamination during the olive oil extraction.

In general, elements contents in the soils and their assimilation by plants can be
subjected to fluctuations according to the agro-climatic conditions [11]. Under specific
environmental conditions, the uptake and accumulation of elements from the soil are
affected. As a response to water stress, plants accumulate some elements in the roots
that will be translocated later to satisfy their needs [63,64]. Furthermore, genetic deter-
minism has been demonstrated to affect the accumulation of elements by the olive tree.
Beltràn et al., (2015) demonstrated that there are differences in some elements concentra-
tions (Ba, Cu, Rb, and Zn) between different olive cultivars [25]. Competitiveness between
chemically similar elements during plant water uptake can also result in different levels of
accumulation. For example, concentrations of Rb and K that exhibited a non-significant
correlation between soil and olive oil are in competition for entry into the plant cell due
to their chemical similarity [61]. When the correlation is not significant between the olive
oil and soil composition, this cannot exclude the hypothesis that the correlation could
be significant between the soil and other organs of the olive tree. It has been previously
demonstrated that the translocation and distribution of assimilated elements in the olive
tree are not homogenous, and elements would be accumulated in different parts of the
plant (leaves, roots, and stem bark), in some cases more than in the fruit [62]. Therefore,
elements distribution in olive oils is not only related to the sources of trace elements in
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the plant, whether natural or anthropogenic, but also determined by the intrinsic proper-
ties of the plant. Some elements such Mg, Mn, Ni, and Sr have preserved the elemental
signature of the soil, and therefore, they are reliable for geographical traceability. Other
elements that did not exhibit a significant correlation could also be used for discrimination
of geographical locations with different environmental conditions.
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3.3. Geographical Classification of Olive Oils

The multi-elemental profile of the olive oils analyzed showed a slight but noticeable
variability between the samples from different origins; however, it did not allow direct
geographical discrimination based on their concentrations. In order to reduce such a
large dataset without drastic loss of information, a principal component analysis (PCA)
was applied. A series of PCAs were performed with different elements combinations.
The elements at closely similar concentrations in all the olive oils did not contribute to
the classification of the samples with respect to their geographical provenance. The most
discriminating elements with notable loading factors that allowed the best separation of
the samples were used as variables. The average concentrations of seven elements (Mn,
Fe, V, Cr, Sr, Zn, and Cu) were used as variables to perform principal component analysis
(PCA). Among these elements, we have demonstrated that only Mn and Sr contents in
olive oil were correlated to that of soil. The first three PCs were extracted and explained
together 71.58% of the variance. The first principal component (PC1) explained 34.6% of
the variance, and the second principal component (PC2) retained 21.1% of the total data
variance. The score plot PC1 vs. PC2 (Figure 3a) allowed establishing a separation between
two groups of samples: Tunisian and European olive oils according to PC1. Even if Tunisian
oils were produced two ways, the score plot did not show a separation according to the
extraction process. Some outliers were observed for the Tunisian samples. T2, T3A, T5,
T8A, T11A, and T11A’ had higher scores on PC1 compared to the cluster of samples from
Tunisia. These samples are characterized by high concentrations of Fe compared to the
median value, ranging between 4090 ± 21 µg kg−1 and 8310 ± 76 µg kg−1, and most of
them were produced in OTIT (Abencor extraction). PC2 did not allow any separation
between samples. The score plot PC1 vs. PC3 presented in Figure 3b was then performed
and showed a clear clustering of olive oil samples according to their origin (Tunisia, Spain,
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and France). There is a clear separation between samples with high predictive accuracy
(R2X(cum) = 0.69). The third principal component was effective for the separation of
French and Spanish samples with 15.9% of the variation. Therefore, the PCA, which is an
unsupervised method, allowed to separate olive oil samples from different geographical
origins based on trace elements.

The loadings plot shown in Figure 3c can be used to identify the contribution of
the elements to the samples classification as well as the correlations between variables.
Fe and Mn are likely to be correlated. Indeed, both elements had a similar geochemical
behavior [65]. They presented the highest loadings on PC1 (between 0.5 and 0.6). Therefore,
they strongly influenced the first component that separates Tunisian and European olive
oils. Concentrations of Fe and Mn exhibited the highest values in olive oil samples from
Tunisia (Table 4). While concentrations of Mn in olive oil were found to be correlated to
that of soil, Fe did not show a significant correlation. Therefore, the separation between
samples from Tunisia and from Europe is not only related to the soil composition. Most
likely, the olive oil extraction process has an important role in olive oils discrimination
since Fe was highly loaded on PC1.

A slightly lower loading value was obtained for V on PC1, which was equal to 0.42.
Vanadium content in olive oil was not correlated with soil. Thus, external sources of V
pollution may be responsible for the significant differences in V content. The highest values
were observed in Tunisian olive oils (Table 4).

Strontium exhibits similar absolute loading values on PC1 and PC3. Therefore, it en-
ables the separation of all the samples according to their geographical provenance.

Copper moderately influences PC1 (0.15) and poorly influences PC3 (≈0). Further-
more, the Zn loading on PC1 (<−0.1) indicates that Zn weakly influences PC1, but it had a
greater influence on PC3 with a large positive loading (0.47). Concentrations of Zn and Cu
are not correlated with soil composition.

Chromium is highly loaded in PC3. Therefore, chromium content exhibits an impor-
tant statistical weight for the discrimination of French and Spanish olive oils. As reported in
Table 4, concentrations of Cr were higher in olive oils from France. The high discriminatory
value for Cr could be related at first to the geogenic signatures of the respective areas
or/and associated with the signature of the packaging and the olive oil extraction process.

Based on this exploratory chemometric analysis, it has been shown that trace elements
content can be used for the geographical discrimination of olive oil. This separation is
based on elements that are mainly related to the soil geochemical background and also on
elements originating from anthropogenic activities and the production process.
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discriminatory value for Cr could be related at first to the geogenic signatures of the re-
spective areas or/and associated with the signature of the packaging and the olive oil ex-
traction process. 

Based on this exploratory chemometric analysis, it has been shown that trace ele-
ments content can be used for the geographical discrimination of olive oil. This separation 

Figure 3. PCA score plot colored according to geographical origin (Tunisia, Spanish Basque country,
and southern France): (a) PC1 vs. PC2; (b) PC1 vs. PC3; (c) loadings plot for PC1 and PC3.

4. Conclusions

The presented work is one of the large-scale studies performed on Tunisian olive oils
in terms of representing the production regions. The quality and the protection of the olive
oil sector are among the main economic priorities in Tunisia.

The findings of this study suggest that the multi-elemental composition of olive oil can
be successfully used for the geographical discrimination issue. The accurate determination
of 16 elements concentrations was performed with high precision in Tunisian, Spanish,
and French olive oils using the quadrupole ICP-MS after microwave-assisted digestion.
Under the optimal conditions of mineralization and analysis, relatively low values of LOD,
LOQ were obtained. The RSD values obtained indicate a good precision. The SRM NIST
2387 peanut butter was used for quality control of the applied analytical procedure, analysis
of the certified and non-certified elements was performed.

The trace elements levels showed a wide range of concentrations and were in agree-
ment with the previously reported results. Among the analyzed elements, four out of
seventeen elements (Mn, Sr, Mg, and Ni) were found to be strongly correlated to the
bioavailable soil composition. This states the transferring of the geochemical signature
of the soil to the olives and then to oils. On another side, the failure to identify clear
correlations for the remaining thirteen elements undoubtedly indicates that the elemental
composition of olive oil could be affected either by plant elements uptake and accumu-
lation depending on agro-climatic conditions and genetic determinism or through the
production process and storage conditions. The PCA classification of olive oils according to
their origins using seven elemental concentrations (Cu, Cr, Fe, Mn, Sr, V, and Zn) allowed
successful discrimination with high predictive accuracy not only between European and
non-European origins but also between Tunisian, French, and Spanish origins. The attribu-
tion of olive oils to their origin was not hindered by the type of the production: whether
manually extracted in a laboratory or pressed on a mill, the origin proved to have a more
significant effect on the variation of multi-element concentrations in olive oils.
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The results obtained in this study are promising and suggest a rapid and reliable
method for the geographical discrimination of olive oil based on trace elements content.
In future work, isotopic compositions of several elements (O, C, N, and Sr) will be investi-
gated and applied with the aim of enhancing the provenance discriminating ability.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods11010082/s1. Table S1. ICP-MS operating conditions and
measured isotopes; Table S2. Limits of detection (LOD). Limits of quantification (LOQ), linearity
(R2), and precision (RSD); Table S3. Median values and ranges of concentrations (mg kg−1) of trace
elements in soil extracts from Tunisia.
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and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem. 2019, 276, 15–21. [CrossRef] [PubMed]

36. Wakefield, J.; McComb, K.; Ehtesham, E.; van Hale, R.; Barr, D.; Hoogewerff, J.; Frew, R. Chemical profiling of saffron for
authentication of origin. Food Control 2019, 106, 106699. [CrossRef]

37. Gumus, Z.P.; Celenk, V.U.; Tekin, S.; Yurdakul, O.; Ertas, H. Determination of trace elements and stable carbon isotope ratios in
virgin olive oils from Western Turkey to authenticate geographical origin with a chemometric approach. Eur. Food Res. Technol.
2017, 243, 1719–1727. [CrossRef]

38. Wali, A.; Damak, F.; Kawada, K.; Isoda, H.; Tamura, K.; Ksibi, M. The effects of geographic region and cultivar on oxidative
stability and elemental analysis of Tunisian extra virgin olive oil. Eur. Food Res. Technol. 2021, 247, 1401–1409. [CrossRef]

39. Rauret, G.; Lopez-Sanchez, J.F.; Sahuquillo, A.; Barahona, E.; Lachica, M.; Ure, A.M.; Davidson, C.M.; Gomez, A.; Luck, D.;
Bacon, J.; et al. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable
trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability
study of acetic acid. J. Environ. Monit. 2000, 2, 228–233. [CrossRef]

40. Sahuquillo, A.; López-Sánchez, J.F.; Rubio, R.; Rauret, G.; Thomas, R.P.; Davidson, C.M.; Ure, A.M. Use of a certified reference
material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Anal.
Chim. Acta 1999, 382, 317–327. [CrossRef]

41. Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three
step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit.
1999, 1, 57–61. [CrossRef] [PubMed]

42. Ure, M.U.; Thomas, R.; Littlejohn, D. Ammonium acetate extracts and their analysis for the speciation of metal ions in soils and
sediments. Int. J. Environ. Anal. Chem. 1993, 51, 65–84. [CrossRef]

43. Mirón, C.; Sánchez, R.; Prats, S.; Todolí, J. Total polyphenol content and metals determination in Spanish virgin olive oils by
means of a dispersive liquid-liquid aerosol phase extraction method and ICP-MS. Anal. Chim. Acta 2019, 1094, 34–46. [CrossRef]
[PubMed]

44. Llorent-Martínez, E.J.; Ortega-Barrales, P.; Fernández-De Córdova, M.L.; Domínguez-Vidal, A.; Ruiz-Medina, A. Investigation by
ICP-MS of trace element levels in vegetable edible oils produced in Spain. Food Chem. 2011, 127, 1257–1262. [CrossRef]

45. Farrell, M.; Ertan, L. Investigation of trace metals in different varieties of olive oils from Northern Cyprus and their variation in
accumulation using ICP-MS and multivariate techniques. Environ. Earth Sci. 2019, 78, 578. [CrossRef]

46. Mendil, D.; Dogan, Ö.; Tüzen, M.; Soylak, M. Investigation of the levels of some element in edible oil samples produced in Turkey
by atomic absorption spectrometry. J. Hazard. Mater. 2009, 165, 724–728. [CrossRef] [PubMed]

47. Elloumi, N.; Abdallah, F.B.; Mezghani, I.; Boukhris, M. Accumulation du plomb par quelques espèces végétales cultivées au
voisinage d’une fonderie de plomb à Sfax Lead accumulation by sorne plant species cultivated in the vicinity of a lead factory in
Sfax. Pollut. Atmos. 2003, 178, 285–294.

48. Llorent-Martínez, E.J.; Fernández-De Córdova, M.L.; Ortega-Barrales, P.; Ruiz-Medina, A. Quantitation of metals during the
extraction of virgin olive oil from olives using ICP-MS after microwave-assisted acid digestion. JAOCS J. Am. Oil Chem. Soc. 2014,
91, 1823–1830. [CrossRef]

49. Kara, D.; Fisher, A.; Hill, S. Detergentless ultrasound-assisted extraction of trace elements from edible oils using lipase as an
extractant. Talanta 2015, 144, 219–225. [CrossRef]

50. Cabrera-Vique, C.; Bouzas, P.R.; Oliveras-López, M.J. Determination of trace elements in extra virgin olive oils: A pilot study on
the geographical characterisation. Food Chem. 2012, 134, 434–439. [CrossRef]

51. Lendinez, E.; Lorenzo, M.L.; Cabrera, C.; López, M.C. Chromium in basic foods of the Spanish diet: Seafood, cereals, vegetables,
olive oils and dairy products. Sci. Total Environ. 2001, 278, 183–189. [CrossRef]

52. Giaccio, M.; Vicentini, A. Determination of the geographical origin of wines by means of the mineral content and the stable
isotope ratios: A review. J. Commod. Sci. Technol. Qual. 2008, 47, 267–284.

53. Gad, S.C. Barium. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 368–370.
[CrossRef]

54. Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability,
uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [CrossRef] [PubMed]

55. Erol, B.; Arslan, G.; Gode, F.; Altun, T.; Özcan, M.M. Determination of some inorganic metals in edible vegetable oils by inductively
coupled plasma atomic emission spectroscopy (ICP-AES). Grasas Aceites 2008, 59, 239–244.

56. Guagliardi, I.; Cicchella, D.; de Rosa, R.; Ricca, N.; Buttafuoco, G. Geochemical sources of vanadium in soils: Evidences in a
Southern Italy area. J. Geochem. Explor. 2018, 184, 358–364. [CrossRef]

57. Chen, L.; Liu, J.-R.; Hu, W.-F.; Gao, J.; Yang, J.-Y. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. J.
Hazard. Mater. 2021, 405, 124200. [CrossRef]

58. Iyaka, Y.A. Nickel in soils: A review of its distribution and impacts. Sci. Res. Essays 2011, 6, 6774–6777. [CrossRef]

http://doi.org/10.1039/B303131D
http://doi.org/10.1016/j.lwt.2018.08.030
http://doi.org/10.1016/j.foodchem.2018.09.149
http://www.ncbi.nlm.nih.gov/pubmed/30409578
http://doi.org/10.1016/j.foodcont.2019.06.025
http://doi.org/10.1007/s00217-017-2876-4
http://doi.org/10.1007/s00217-021-03717-x
http://doi.org/10.1039/b001496f
http://doi.org/10.1016/S0003-2670(98)00754-5
http://doi.org/10.1039/a807854h
http://www.ncbi.nlm.nih.gov/pubmed/11529080
http://doi.org/10.1080/03067319308027612
http://doi.org/10.1016/j.aca.2019.10.009
http://www.ncbi.nlm.nih.gov/pubmed/31761046
http://doi.org/10.1016/j.foodchem.2011.01.064
http://doi.org/10.1007/s12665-019-8581-9
http://doi.org/10.1016/j.jhazmat.2008.10.046
http://www.ncbi.nlm.nih.gov/pubmed/19036503
http://doi.org/10.1007/s11746-014-2511-5
http://doi.org/10.1016/j.talanta.2015.05.056
http://doi.org/10.1016/j.foodchem.2012.02.088
http://doi.org/10.1016/S0048-9697(01)00647-7
http://doi.org/10.1016/B978-0-12-386454-3.00819-8
http://doi.org/10.1016/j.chemosphere.2017.03.074
http://www.ncbi.nlm.nih.gov/pubmed/28347915
http://doi.org/10.1016/j.gexplo.2016.11.017
http://doi.org/10.1016/j.jhazmat.2020.124200
http://doi.org/10.5897/SREX11.035


Foods 2022, 11, 82 21 of 21

59. Madejón, P.; Marañón, T.; Murillo, J.M. Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees.
Sci. Total Environ. 2006, 355, 187–203. [CrossRef] [PubMed]

60. Zeiner, M.; Juranovic-Cindric, I.; Škevin, D. Characterization of extra virgin olive oils derived from the Croatian cultivar Oblica.
Eur. J. Lipid Sci. Technol. 2010, 112, 1248–1252. [CrossRef]

61. Nedjimi, B. Measurement of selected trace elements in Olea europaea L. cv. ‘Sigoise’. J. Trace Elem. Med. Biol. 2020, 62, 126595.
[CrossRef] [PubMed]

62. Al-Habahbeh, K.A.; Al-Nawaiseh, M.B.; Al-Sayaydeh, R.S.; Al-Hawadi, J.S.; Albdaiwi, R.N.; Al-Debei, H.S.; Ayad, J.Y. Long-term
irrigation with treated municipal wastewater from the wadi-musa region: Soil heavy metal accumulation, uptake and partitioning
in olive trees. Horticulturae 2021, 7, 152. [CrossRef]

63. Ben Mansour-Gueddes, S.; Saidana-Naija, D.; Flamini, G.; Cheraief, I.; Braham, M. Assessment of the Climatic Condition’s Impact
on Volatiles, Polyphenols and Mineral Contents in Tunisian Olive Tree (Olea europaea L.). Pol. J. Environ. Stud. 2021, 31, 219–230.
[CrossRef]

64. Ben Mansour-Gueddes, S.; Saidana, D.; Cheraief, I.; Dkhilali, M.; Braham, M. Biochemical, mineral and anatomical characteristics
of the olive tree cv. Chetoui growing in several Tunisian areas. Acta Sci. Pol. Hortorum Cultus 2018, 17, 49–70. [CrossRef]

65. Pohl, W.L. Economic Geology of Metals. In Economic Geology Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction
to Formation and Sustainable Exploitation of Mineral Deposits; Wiley: Hoboken, NJ, USA, 2011; pp. 149–284. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2005.02.028
http://www.ncbi.nlm.nih.gov/pubmed/15890386
http://doi.org/10.1002/ejlt.201000006
http://doi.org/10.1016/j.jtemb.2020.126595
http://www.ncbi.nlm.nih.gov/pubmed/32619918
http://doi.org/10.3390/horticulturae7060152
http://doi.org/10.15244/pjoes/133232
http://doi.org/10.24326/asphc.2018.2.5
http://doi.org/10.1002/9781444394870.ch2

	Introduction 
	Materials and Methods 
	Samples Collection and Preparation 
	Samples from Tunisia 
	Samples from Europe 

	Multielemental Analysis 
	Reagents and Chemicals 
	Olive Oil Mineralization 

	Soil Extraction 
	Multielemental Analysis 
	Analytical Quality Control 
	Statistical Data Analysis 

	Results and Discussion 
	Trace Elements Concentrations in Olive Oils 
	Relationship between Olive Oil and Soil Elemental Content in Tunisia 
	Geographical Classification of Olive Oils 

	Conclusions 
	References

