Workshop Nanoparticles : Analytical Strategies & Applications

spICP-MS & inorganic nanoparticles : implementation, optimization, validation and application to consumer products

Mathieu Menta

mathieu.menta@univ-pau.fr

General information on inorganic nanoparticles

A booming market, an increasing use in different fields:

Partic	les Products	Main use	Food Additiv	/e
TiO ₂	Food (sweets & sauces), paints, hygiene products, food packaging, cosmetics, drugs	 ✓ White pigment ✓ UV filter (in combination with ZnO) ✓ Flavour enhancer (dry fruits, soups, musta 	E171 rd)	
Ag	Food packaging, textiles, food, food supplements, hygiene products, medical devices	 ✓ Antimicrobial agent ✓ Decorative agent for patisserie 	E174	
SiO ₂	Food, powder soups, coffee, hygiene products, mayonnaise 	 ✓ Anti-caking agent ✓ Improvement of texture and smoothn 	E551 ess	
lron oxide	Food	✓Colour agent ✓Increase of bioavailability	E172	

A large media coverage

Inorganic nanoparticles in Cosmetics

TiO2 & ZnO in Sunscreens : Mineral filters, inert and opaque powders, used for light reflection

under the grant N° 952306

européenne

Inorganic nanoparticles & Food Technology

<u>Conventional use of inorganic food additives:</u> obtain new properties at the nanoscale

For example : glittery/shiny effect in confectionery, spices, in gourmet cuisine, etc.

TiO2 NPs: health effects

HEALTH EFFECTS OF TiO_2 NPs

Inhalation

Possible carcinogen (group 2B) *(from IARC)*

Ingestion

Daily intake :

- **0.03** mg per kg body weight (adult)
- until **13** mg per kg body weight (children < 10 years)

Possible carcinogen by ingestion ?

Since 2020, in food, the use of E171 is bannished in France and since 2021 in Europe

A relatively vague regulatory framework...

How to differentiate them ?

Particle : minute piece of matter with defined physical boundaries; Agglomerate : collection of weakly bound particles or aggregates where the resulting external surface area is similar to the sum of the surface areas of the individual components; Aggregate : particle comprising of strongly bound or fused particles

European Commission (Recommendation 2011/696/EU -18/11/2011)

Nanomaterial means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm. In specific cases and where warranted by concerns for the environment, health, safety or competitiveness the number size distribution threshold of 50 % may be replaced by a threshold between 1 and 50 %

Which ones?

Which parameter to measure? Which measurand? Few techniques able to detect 1 nm

Other definitions :

 ISO (Norm ISO TS 80004-1)

 • Material with any external dimension in the nanoscale or having internal structure or surface structure in the nanoscale.(Nanometric scale = 1 to 100 nm)

Cosmetic Directive n°1223/2009

 Insoluble or bio-persistent and intentionally manufactured material with one or more external dimensions, or an internal structure, on the scale from 1 to 100 nm
 The name of the nanomaterials must appear in the ingredient list

Other regulations :

- Biocide (CE n°528/2013)
- <u>Additives</u> (CE n°1333/2008)
- <u>INCO</u> (CE n°1169/2011)

Regulation and labelling

Regulation 1169/2011 (European Parliament): provides for labelling of NMs used as ingredients

Presence of nanomaterials subject to a marking obligation for cosmetics, biocidal products and foodstuffs.

Target audience: Control Authority, Formulators/Distributors of Finished Products, Manufacturers of Raw Materials, etc.: Is the product properly labelled (RCE No. 1881/2006)?

- Presence of particles?
- Particle composition?
- Nano particles?
- What distribution?

Development of an analytical strategy for the size characterization of additives in food and cosmetic products

Need for appropriate analytical techniques for regulatory purposes: accuracy, speed, cost of analysis

An analytical arsenal at your disposal

Available techniques in UT2A facilities

What analytical strategy should be implemented?

Pay attention to the parameter / measurand according to the technique used +

An essential multi-technical approach

Lack of a standardized or recognized characterization method & CRM

different techniques in order to develop

Nanoparticles characterization by Single Particle mode (spICP-MS)

The "individual counting" of particle by spICP-MS is a technique:

- recent, booming, adapted to the analysis of metallic nanomaterials

- provide answers in terms of composition, quantity, and size distribution of metal nanoparticles suspended in aqueous matrices.

simple fast sensitive specific

Agilent Technologies

Supposedly "spherical" shape Minimum variable diameter depending on the elements, samples and matrices

Information given: Average / median / modal diameter Particle number distribution Particulate concentration Dissolved element content

What can be observed in a few tens of seconds by spICP-MS ?

Raw data spICP-MS

Number of particles Particulate mass Ionic concentration

Size distribution of particles

CPS

Conversion of raw data according to successive calculations Automated in the latest generation of software and devices Ability to create custom calculation macros

time Conversion of a raw signal obtained by spICP-MS (A) into a number of events as a function of the signal strength (B) and then as a function of the particle size (C).

Data processing in spICP-MS

européenne

Importance of the transport efficiency

In spICP-MS, as well as in ICP-MS in general, when conventional sample introduction systems are used, only a fraction of the nebulized suspension effectively reaches the plasma (1–15%).

The precise determination of this fraction, which is defined as transport efficiency (η_n) is fundamental for the correct determination of both particle number size distribution and concentration

		method 1	method 2	method 3
<u>3 main calculation methods</u>	replicate	waste collection (%)	particle size (%)	particle frequency (%)
evel tied	day 1 (12/1/10)	a	9.1 ± 0.2	9.0 ± 0.9
analytical.	day 2 (12/22/10)	14.4 ± 1.2	8.8 ± 0.4	8.4 ± 1.1
pousesanger	day 3 (1/12/11)	14.5 ± 0.7	8.6 ± 0.2	8.7 ± 0.7
Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Counled Plasma	^a Measurement not reporte	ed due to sampling error.		

Method 1 "Waste collection" gives the best efficiencies Methods based on size (2) or frequency (3) give similar results

Heather E. Pace,^{†,5} Nicola J. Rogers,[†] Chad Jarolimek,[†] Victoria A. Coleman,[‡] Christopher P. Higgin

Method 1: Problem of underestimation of particulate concentration and overestimation of size

Methods 2 and 3: Results in accordance with theoretical values

Method 2 is the most used

Mass Spectrometry

James F. Ranville*

Measurement of a random event with a regular interval (Dwell time)

Conventional principle of signal acquisition by ICPMS

Influence of the Dwell time

Gold NPs 50 nm

Effect of Dwell Time on NPs quantification

200 000 part/mL dwell time (50 $\mu s)$

200 000 part/mL dwell time (3000 µs)

300 000 part/mL dwell time (100 μ s)

300 000 part/mL dwell time (1500 μs)

PerkinElmer For the Better

Influence of the Dwell time

- No settling time for the analysis of a single mass.
- Continuous rapid acquisition
- Dwell Time reduced to 0.05 to 10 ms

PerkinElmer

Influence of the sample extract/suspension dilution factor

<u>Conditions & results selected</u>: same granulometric properties and quantification of particles in accordance with the dilution factors

Influence of the ionic backgound

Number of particles

It is the distinction between the particles events from analytical background noise that will make the difference! <u>With the incidence</u> <u>of dwell-time!</u>

Once all these parameters checked with ionic and or nanoparticles standards, it's time for analysis with real samples !

spICP-MS: tool of choice for the screening of inorganic nanoparticles?

Objectives:

Propose a fast and efficient screening method for the detection of inorganic NPs in consumer products Discriminate products subject to regulation : Presence of nanoparticles ? YES or NO ? Do not accurately characterize the particle size distribution or quantify them

Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES)

* Ultra Trace Analyses Aquitaine UT2A/ADERA, Hillopare Pau-Pyrinies, 2 aconse du Prisident Anget, 64053 PAU cedex 9, Pau, Fran

Inmaculada de la Calle^{a,b,*}, Mathieu Menta^a, Marlène Klein^a, Fabienne Séby^a

o de Química Analítica y Alimentaria, Área de Química Analítica, Facultad de Química, Universidad de Vigo, Campus As Lapous a/a, 36310 Viss, Span

Sample preparation as simple and fast as possible Tests carried out on 16 cosmetic samples:

Code	Type of sample	Characteristcs (label, metals and other compounds)	Price (€)
1	Anti-dandruff shampoo A	Zn-pyrithione-mentol, dimethicone	4
2	Anti-dandruff shampoo B	Zn-pyrithione, ZnCO ₃ , MgCl ₂ , dimethicone	4
3	Shampoo & hair conditioner	MgCl ₂ , KCl, AlCl ₃ , CuSO ₄ , MgCl ₂ , MnCl ₂ , ZnCl ₂ , dimethicone	2
4	Sunscreen SPF 50 (spray)	Titanium dioxide (nano), trimethoxycaprylysilane	15
5	Sunscreen SPF 30 (cream)	Titanium dioxide (nano)/titanium dioxide, iron oxides, dimethicone, aluminum hydroxide	15
6	Antiwrinkle day cream	Titanium dioxide (nano), silica, dimethicone, sodium acrylate/sodium acryloydimethyl taurate copolymer	3
7	Day cream SPF 10 with gold	Colloidal gold, synthetic peptide	20
8	Facial serum A	Golden microseaweed 0 ⁺ with particles of gold, titanium dioxide, mica	5
9	Day cream SPF 10 A	Golden microseaweed 0* with particles of gold, titanium dioxide, mica	5
10	Night cream A	Golden microseaweed 0* with particles of gold	5
11	Facial serum B	Titanium dioxide, mica, gold, cyclopentasilonxane, divinyldimethicone dimethicone copolymer, PEG/PPG/14/4 dimethicone	15
12	Day cream SPF 10 B	Titanium dioxide, mica, iron oxides, gold, cyclopentasilonxane	15
13	Night cream B	Titanium dioxide, mica, iron oxides, gold, cyclopentasilonxane, dimethicone	15
14	Toothpaste for sensitive teeth	Titanium dioxide, KNO3, NaF2, silica	5
15	Toothpaste	Titanium dioxide, hydrated silica, mica, phtalocyanine blue BN of copper (cupferphtalocyanine), trisodium phsophate	2
16	Lip balm SPF 40	Titanum dioxide (nano), alumina, perfume (Fragance), silica (nano)	5

Screening of nanoparticles in cosmetic samples : Presence or Absence ?

Screening of nanoparticles in cosmetic samples : Presence or Absence ?

TiO2 NPs screening by SP-ICP-MS.

Code	Type of sample	Label		SP-ICP-MS screening of	Only samples including the [Nano] I
		TiO ₂	TiO2 'nano'	NPs	positive screening except one (14)
1	Shampoo	No	No	No	Sample 4 (sunscreen) (A)
2	Shampoo	No	No	No	250 300 250 250 Sample 14 (toothphaste) (D)
3	Shampoo & hair conditioner	No	No	No	
4	Sunscreen SPF 50 (spray)	Yes	Yes	Yes	Sample 5 (sunscreen) (B)
5	Sunscreen SPF 30 (cream)	Yes	Yes	Yes	
6	Anti-wrinkle day	Yes	Yes	Yes	0 100 Sample 16 (lip balm) (E) 2 100
	cream				
7	Day cream with SPF 10	No	No	No	Sample 6 (face cream) (C) 500 400 400 400 400 400 400 400 400 400
8	Facial serum	Yes	No	No	250 250 0 50 100 158
9	Day cream SPF 10	Yes	No	No	150 150 100
10	Night cream	No	No	No	50 50 50 50
11	Facial serum	Yes	No	No	
12	Day cream SPF 10	Yes	No	No	Diameter (nm)
13	Night cream	Ves	No	No	
14	Toothpaste (for sensitive teeth)	Yes	No	Yes	Since this product is labeled [Nano]
15	Toothpaste	Yes	No	No	
16	Lip balm protector	Yes	Yes	Yes	

ano] label show e (14)

From a regulatory point of view, the spICP-MS already answers the first question relating to labelling: Presence of particles, YES or NO?

Products with positive screening : Deeper characterization required (Particle size distribution & quantification)

Characterization of TiO2 NPs in food & cosmetic additives

européenne

Parameter	Results
% of particles < 100 nm	11 ± 2
Mean Diameter(nm)	188 ± 6
Median Diameter (nm)	176 ± 3
[TiO ₂] _{particulate} (g/kg)	259 ± 6

Parameter	Results
% of particles < 100 nm	69 ± 4
Mean Diameter(nm)	93 ± 2
Median Diameter (nm)	82 ± 3
[TiO ₂] _{particulate} (g/kg)	846 ± 12

According to INCO or COSMETIC Regulation the both products are "nanos" According to Def. EU, only the cosmetic additive is...

Characterization of TiO2 NPs in cosmetic products

Parameter	Résults
% of particules < 100 nm	16 ± 2
Mean Diameter(nm)	173 ± 3
Median Diameter(nm)	161 ± 6
[TiO ₂] _{particulate} (g/kg)	1.35 ± 0.03

Parameter	Résults
% of particules < 100 nm	97.1 ± 0.5
Mean Diameter(nm)	46 ± 2
Median Diameter(nm)	41 ± 4
[TiO ₂] _{particulate} (g/kg)	241 ± 13

Characterization of Iron Oxydes in cosmetic products

Many mixtures and morphologies on the market Significant differences between spICP-MS & SEM results (97 % of particles < 100 nm)

Characterization of TiO2 NPs in pharmaceuticals products

Drug Capsule

Compressed Drug

Contraceptive Pill

	Parameter					
Sample	% < 100 nm	Mean Diameter (nm)	Median Diameter (nm)	[TiO2 NPs] g/kg		
Drug capsule	16 ± 3	192 ± 4	176 ± 6	6.0 ± 0.3		
Compressed Drug	25 ± 7	165 ± 7	147 ± 8	0.49 ± 0.02		
Contraceptive pill	14 ± 1	203 ± 4	195 ± 8	3.2 ± 0.2		

The reliability of the results obtained by spICP-MS? Legitimate question

Characterization of TiO2 particles in food products

• Wide variety of samples, wide variety of size distributions

- Lack of a standardized or recognized characterization method
- Absence of CRM (certified reference material) in real matrices containing nanoparticles characterized by different methods

<u>Need for rigorous analytical strategies to ensure the relevance of the results obtained</u> <u>and method validation</u>

Criteria for analytical validation of operating conditions in spICP-MS

Implementation of an essential self-control strategy

• <u>Performance evaluation:</u>

- instrumental performance: cf. manufacturer procedures, linearity of the response for the ionic elements analyzed, accuracy of the measured sizes for nanoparticles standards and concentrations measured for nanoparticles standards (if certified in concentration); Determine parameters such as: LOD_{NP} (particles/L), LOD_{MP} (ng/L), LOD_{s} (nm), etc.

<u>Acceptance Criteria</u>

- number of events, maximum ionic concentration, etc., for risk mitigation (co-event, bad size estimation, contamination)

- Obtain identical results for several different dilution factors while respecting the previous criteria

Propose tools, such as a spreadsheet, to decide on the reliability of the analytical method XP ISO/TS 19590 standard can serve as the basis for establishing this spreadsheet / validation

Cross technique comparison for method validation

Intercomparison using the techniques available at the UT2A laboratory

Characterization of TiO2 particles in sunscreens

Results agreed for most samples

Some differences related to the measurand associated with the analysis technique

Sample Diameter(nm) Composition Technique 124 ± 8 DLS N/A Candies 147 ± 3 TiO₂ AF4-MALLS-ICP-MS 125 ± 4 TiO₂ spICP-MS 112 ± 4 N/A DLS TiO₂ Chewing gum 216 ± 6 AF4-MALLS-ICP-MS TiO₂ spICP-MS 126 ± 1 35 - 225 DLS N/A 30 - 150 Ag AF4-MALLS-ICP-MS Decorative pearls 50-200 Ag spICP-MS 109 ± 9 N/A DLS TiO₂, Al₂O₃ 86 ± 5 Sunscreens AF4-MALLS-ICP-MS 80 ± 10 TiO₂ spICP-MS 70-125 N/A DLS SiO₂, TiO₂ Toothpaste 106 ± 9 AF4-MALLS-ICP-MS TiO₂ 50 - 100 spICP-MS 45-175 N/A DLS TiO2, Al2O3 50 - 90 AF4-MALLS-ICP-MS Lip balm

Characterization of particles in foods & cosmetics

Spherical equivalent diameter

40 - 100

Hydrodynamic diameter G

TiO₂

Gyration diameter

spICP-MS

Center of

Chewing gum E171 – TiO₂ NPs

Particle size number distribution between with spICP-MS and SEM

1700 - 3500 analysed particles / run

(n = 6)	D _{mean} (nm)	D _{median} (nm)	% < 100 nm	D10 (nm)
Mean ± SD	140 ± 3	135 ± 4	29 ± 2 %	65 ± 2

D _{mean} (nm)	D _{median} (nm)	% < 100 nm
137	127	23 %

Good agreement between the results obtained by these two techniques

Golden Pepper E171- TiO2 NPs

Particle size number distribution between with spICP-MS and SEM

under the grant N° 952306

européenne

Golden Pepper E171 & E172 - TiO₂ & Fe₂O₃ NPs

Particle size number distribution between with spICP-MS and SEM

Deverseter	Technique			
Parameter	spICPMS (Ti)	spICPMS (Fe)	SEM	
Mean Diameter(nm)	69	134	42	
Median Diameter (nm)	46	121	42	
% of particles < 100 nm	83	34	100	

No distinction between TiO_2 and Fe_2O_3 by SEM without an elemental analyzer (EDX)

Inter-laboratory comparison

Good agreement between the different laboratories

To be completed with other laboratories and other samples and matrices

Comparison between pristine additive & Food product

Comparsion between pristine additive & Food product

Comparsion between pristine additive & Food product

Agreement between size distributions of the ingredient and the finished product

In some cases differences are observed : Sample preparation optimization required

Optimization of TiO₂ NPs extraction in complex food samples

Influence of the extraction media on the granulometric properties of particles

Wide disparity in particle size results according to the extraction/dispersion media

What representativeness? Sample preparation must:

- preserve/not modify/denature the initial particle size
- be quantitatively representative

As always, sample preparation is the key step, especially for "nanos"!

Main steps or processes used

- dispersion/extraction: ultrapure water, organic solvents, surfactants, alkaline solutions, etc.

- agitation: vortex, bath or ultrasonic probe (define time, duration, program, etc.)

- filtration, centrifugation

No miracle and universal recipe Lack of a harmonized extraction method Matrix/sample specific

Need to evaluate the respective influences of the different steps on particle size and recoveries

Implementation of a global methodology for method validation

Sample preparation

- Step 2: Sample preparation for spICP-MS analysis
- <u>Step 3</u>: Acid digestion of the extract prepared for spICP-MS, determination of $Ti_{extrait}$ & determination of the exctraction revovey (Rdt(%))
- <u>Step 4</u>: Analysis by spICP-MS of the extract, determination of TiO2 particles size distribution and concentration TiO_{2 part} and Ti_{part}. & evaluation of the extract representativity (*Rep*(%))

Repeat steps 3 and 4 before and after each preparation process implemented to assess and quantify their respective influences Necessary approach in the context of a method validation

Optimization of TiO2 NPs extraction in complex food samples

Determination of Ti mass recoveries

TiO₂ ingredient

Sauce kebab

TMAH (2.5%):

Extraction yield of the order of 80% for the sauce Limits the risk of aggregate/agglomerates

Complementary parameters to optimize: TMAH concentration and volume, sonication step (bath or probe, duration, program), etc.

 289 ± 23

 297 ± 9

ENZ (pH 7)

Co-funded by the Horizon 2020 Framework Programme of the European Union under the grant N° *952306*

 273 ± 23

 278 ± 9

Evaluation of the method accuracy

Spiking experiment (n = 3)

Sample	Median size (nm)
NM-100 RM	220 ± 24
E171	197 ± 5

sample	Median size (nm)	Recovery (%)
Spiked mayonnaise NM-100 RM	180 ± 2	99 ± 9
Spiked mayonnaise E171	173 ± 5	93 ± 5

- \checkmark Enhancement of particle dispersion in the presence of the matrix
- ✓ Good recoveries

Method implementation on food sausages

SAMPLE	Country	E171 (label)	Fat content (g / kg)	Total Ti (g/kg)	TiO ₂ particles concentration (g/kg)	NPs fraction (% < 100nm)	Median size (nm)	Ti recovery (%)
White sauce	France		260	< 0.001	NA	NA	NA	NA
			260	< 0.001	NA	NA	NA	NA
			290	< 0.001	NA	NA	NA	NA
	Spain	х	< 5	2.8 ± 0.1	4.0 ± 0.3	7.5 ± 0.1	211 ± 2	86 ± 3
Fra Mayonnaise Sp Ut	France		720	< 0.001	NA	NA	NA	NA
			710	< 0.001	NA	NA	NA	NA
	Spain	х	0	0.69 ± 0.04	1.15 ± 0.08	6±1	255 ± 1	100 ± 1
		х	< 5	5.5 ± 0.2	6±1	2.3 ± 0.3	321 ± 7	65 ± 6
	UK	x	0	0.86 ± 0.04	1.4 ± 0.2	6±1	247 ± 7	99 ± 7
Aïoli	Spain	х	0	1.18 ± 0.04	1.1 ± 0.1	3.6±0.3	280 ± 1	56 ± 3
Cocktail sauce	Spain	x	< 1	0.55 ± 0.02	0.77 ± 0.02	12 ± 1	213 ± 10	84 ± 1
Caesar sauce	UK	x	0	0.9 ± 0.1	0.92 ± 0.02	8.6±0.4	206 ± 9	61 ± 1
White chocolate	UK	х	0	0.60 ± 0.02	0.6 ± 0.2	7 ± 1	231 ± 19	60 ± 10

- No TiO₂ particles detected in French fatty food samples, as indicated in the label
- Significant amount of TiO_2 (0.6 6 g/kg) in dietetic samples from UK and Spain

Other examples of sample spiking for method validation

Parameter	Results
Mean Diameter (nm)	65 ± 2
Recovery (%)	95 ± 2

Parameter	Results
Mean Diameter (nm)	62 ± 3
Recovery (%)	91 ± 3

Parameter	Results
Mean Diameter Ag NPs (nm)	86 ± 8
Mean Diameter Au NPs (nm)	93 ± 1
Recovery Ag NPs (%)	101 ± 4
Recovery Au NPs (%)	94 ± 3

spICP-MS : Suited tool for characterization of most of inorganic particles

Complementary to confirmation techniques (TEM, SEM, SEM-EDX, etc.)

Relatively new and booming technology

Many developments still to be made to meet all needs

Technical and instrumental limitations (spherical model, 1 element / analysis, LOQ of some elements, etc,)

Many developments to be made on the development of sample preparation protocols for complex matrices

Questions?

Thank you for your attention!

François Auger Guillaume Bucher

Inmaculada de La Calle Marlène Klein Fabienne Seby

Co-funded by the Horizon 2020 Framework Programme of the European Union under the grant N° *952306*

Acknowledgements