

Gaëtane Lespes gaetane.lespes@univ-pau.fr

Université de Pau et des Pays de l'Adour

IPREM

Co-funded by the Horizon 2020 Framework Programme of the European Union under the grant N° *952306*

1. Nano-objects and nanoparticles

→ Differents types of nanoparticles :

natural, in the environment :

Soil extract

	Examples	Applications	
Carbon Based	nanotubes (CNT) simples or fonctionnalized	automobile, aeronautics, sport, electronics, textiles, plastics	
	fullerenes simples or fonctionnalizd	improving the optical or electrical properties of polymers, medicine & pharmaceutical appl.	
	nanoglobules, nanosphères	pharmaceutical products	
Inorganic	nanopowders of metal oxides	TiO ₂ , ZnO : UV absorbants in sum creams, polymers & textiles; Fe_2O_3 : medical imaging NMR ; SiO ₂ : abrasive ; CuO : bactericide	
	metal nanopowders	Au : therapy, biology, catalysis Ag : bactéeicide Fe : magnetic materials	
	alumino-silicates	zeolites: catalysis, filtration (air/water) ceramic: photocatalysis, biology clays : lubricants, improving the thermal prop. of polymers	

manufactured :

Carbon nanotubes

Nanoparticles in environment and health effect, G. Lespes, Dans "Meta Ilomics: Analytical techniques and speciation methods" Chap. 11 (2016) 319-337 (ISBN : 978-3-527-33969-3)

2. How to describe nanoparticle ?

 \rightarrow Intrinsic parameters

Parameter	Scale of	Possible descriptor(s)		
	observation			
Size	Nano-object	Geometrical diameter or length or other typical dimensions, if		
		shape is known		
		Sphere-equivalent diameter		
Shape	Nano-object	Geometrical shape (i.e. sphere, rod, polyhedron) if relevant /		
		possible		
		Aspect ratio (i.e. ratio between the respective longest and shortest		
		dimensions of a nano-object, e.g. length-to-diameter ratio) (ar)		
		Shape factor		
		(i.e. ratio between gyration radius and hydrodynamic radius) (ρ)		
Structure	Nano-object	Chemical map (Homogeneous or composite or		
		Density <i>structured, e.g. hollow, core-shell)</i>		
	Constitutive	Porosity (or specific surface area)		
	material	Crystalline state		
Chemical	Nano-object	Elemental composition or ratio(s), in the whole and/or different		
composition		structural components (e.g. core-shell)		
	Surface	Surface functional group(s) and/ or elemental composition of the		
		material at the surface of the nano-object		

→ Compilation of intrinsic parameters and properties of nanoparticles, from the individual scale to the population scale

Primary Synergistic properties, properties: direct: Mechanical Surface-related: **Optical** Electrical charge (Zeta potential) Thermal Oxidative Magnetic (electro)Catalytic Electrical (Ad)sorptive Molecular diffusion Stability (intra-object) Solubility Individual Population Rheological parameter: parameters: Concentration Size indirect: Shape Size-based Dissociation (intra-object) Structure distributions of Dissolution Chem. composition concentration Nano-object Agglomeration/aggregation Colloidal stability/ Sedimentation Population of nano-objects Transport Electrophoretic mobility Surrounding medium Transfer/ uptake Biointeraction Nanoanalytics: History, concepts and specificities" S. Faucher, P. Le Coustumer, G. Lespes, Environ. Sci. Pollut. Res (2018)

5

3. Nanoparticle characterization

3.1. Objectives

The physico-chemical characterisitics to determined are selected by considering (1) all the intrinsic parameters and properties that can describe the nanoparticles, (2) the link between parameter and properties, (3) the parameters and properties that can be measured directly.

Nanoanalytics: History, concepts and specificities" S. Faucher, P. Le Coustumer, G. Lespes, Environ. Sci. Pollut. Res (2018)

3.2. Main characterization methods

\rightarrow Focus on the IPC-MS: what does it allow to determine?

3.3. sp-ICP-MS vs AF4-MALS-ICP-MS

Sp-ICP-MS « Individual particle counting »

- (1) Spatial resolution for microscopu; Resolution estimated over 1-100 nm for DLS, SEC and AF4, from the minimum size difference btween 2 adjacent peaks that can be observed
- (2) Depend on elements taken into account ICP-MS

 \rightarrow . Sp-ICP-MS « simpler and direct » to instrumentally implement

→ AF4-MALS-ICPMS more complex, non based on hypotheses concerning shape or transfer rate, more resolved, better taking into account the nanorange, multielemental, with reduced sampe preparation

3.3. Focus on AF4-MALS-ICPMS

Size range (nm)	≈(10 - 500)
Morphology information	(nm) 10- 500
Size selectivity	0,8 - 1
Recovery (%)	> 90
Repeatability (%) peak top half height	2 - 3 2 - 3
	Zn Cd Se
Relative detection limits (µg L ⁻¹)*	0,03 0,01 0,05
Repeatability (%)	3 à 10
Size discrimination	depends of the type of particles no observed in the following studies

*100 μ L injected

Other performances TiO₂ nanoparticles & Gold- silver nanoshells (Au-Ag NS)

		⁴⁶ Ti ⁴⁹ Ti*	¹⁹⁷ Au**	¹⁰⁷ Ag ¹⁰⁹ Ag**
Parti	cle type	TiO ₂ NP (E 171)	Au NP, Au- Au-Ag NS@	Ag NS, Phybrid silica
Size r	ange taille (nm)	100- 300	20-	200
Relat	ive detection limits	0,7 (µg g⁻¹)	5 (ng L ⁻¹) <0,3 (μg g ⁻¹)	8 2 (ng L ⁻¹) <0,04 (μg g ⁻¹)
Repe Ov	atability (%) verall analytical process ICPMS analysis	≤ 6 ≤ 2	≤ 4 ≤ 2	≤ 4 ≤ 2
Mear (%)	n recovery	100	100	100

Biological tissue

** Cell samples and suspensions

Concentration

agregation state Solubilization/ dispersibility

F. Faucher, G. Lespes "Quantification of titanium from TiO2 particles in biological tissue", J. Trace Elements in Medicine and Biology, 2015, 32:40-44

F. Faucher, S. Soulé, A-L. Bulteau, J. Allouche, G. Lespes " Gold and silver quantification from gold-silver nanoshells in HaCaT cells ", J. Trace Elements in Medicine and Biology, 2018, 47:70-78

4. Examples of characterization 4.1. Au-Ag NS

Main characteristics

Particle	type	Au NP	Au-Ag NS	Au-Ag NS@PLL	Au-Ag NS@PLL-SiO ₂
Size Coating	range (nm) thickness (nm)	25-200 -	70-150 -	70-150 10	80-160 15
Atomic (<i>Mass</i>	ratio (Ag/Au) <i>ratio (Ag/Au</i>))	-		1,82 ±0,07* // 1,71 ±0 1,00 ±0,04* // 0,93±0,),05** ,04**

* XPS ** ICPMS

F. Faucher, S. Soulé, A-L. Bulteau, J. Allouche, G. Lespes "Gold and silver quantification from gold-silver nanoshells in HaCaT cells ", J. Trace Elements in Medicine and Biology, 2018, 47:70-78

S. Soulé, A.L. Bulteau, S. Faucher, et al., "Design and cellular fate of bioinspired Au-Ag nanoshells@hybrid silica particles", Langmuir, 2016, 32:10073-10082

4.2. CdSe/ZnS quantum dots (QD)

QD test suspension prepared from the synthesis batch (1:200 v:v)

F. Faucher, G. Charon, E. Lützen, P. Le Coustumer, Y. Sivry, G. Lespes "Characterization of polymer-coated CdSe/ZnS quantum dots and investigation of their behaviour in soil solution at relevant concentration by asymmetric flow field-flow fractionation- multi angle light scattering- inductively coupled plasma- mass spectrometry" Anal Chim Acta, 2018, 1028:104-112

Size range (P-QDs) : ≈ 20- 100 nm			≥ 15
P3		Diameter (P-QDs)	Relative concentration
	P3: P2:	(68 ± 8) nm (44 ± 5) nm	(68,7±0,8)% (26,3±0,5)%
(P2)	P1:	(36 ±2) nm	(5,0±0,3)%
	Nucleus composition homogeneous over the size range		
 Metal nucleus diameter : (6,0 ± 0,1) nm Core diameter : (3,20 ± 0,05) nm Shell thickness : (1,36 ± 0,05) nm 			6,8 (san a show
			٤

A nucleus with inhomogeneous shell A polymer coating of variable thickness

Metal nucleus diameter : between 5 and 8 nm

Bibliography

- G. Lespes, "Nanoparticles in environment and health effect", Metallomics: Analytical techniques and speciation methods, 2016, 11:319-337 (ISBN : 978-3-527-33969-3)
- S. Faucher, P. Le Coustumer, G. Lespes, "Nanoanalytics: History, concepts and specificities" Environ. Sci. Pollut. Res, 2018, on line July 11th
- F. Faucher, G. Lespes "Quantification of titanium from TiO₂ particles in biological tissue", J. Trace Elements in Medicine and Biology, 2015, 32:40-44
- S. Soulé, A.L. Bulteau, S. Faucher, et al., "Design and cellular fate of bioinspired Au-Ag nanoshells@hybrid silica particles", Langmuir, 2016, 32:10073-10082
- F. Faucher, S. Soulé, A-L. Bulteau, J. Allouche, G. Lespes "Gold and silver quantification from gold-silver nanoshells in HaCaT cells ", J. Trace Elements in Medicine and Biology, 2018, 47:70-78
- F. Faucher, G. Charon, E. Lützen, P. Le Coustumer, Y. Sivry, G. Lespes "Characterization of polymer-coated CdSe/ZnS quantum dots and investigation of their behaviour in soil solution at relevant concentration by asymmetric flow field-flow fractionation- multi angle light scattering- inductively coupled plasma- mass spectrometry" Anal Chim Acta, 2018, 1028:104-112