

ICP-MS

Inductively Coupled Plasma Mass Spectrometry

Co-funded by the Horizon 2020 Framework Programme of the European Union under the grant N° 952306

Definitions

ICP-MS

Analytical technique developed to analyse elements using Mass Spectrometry of ions generated by an Inductively Coupled Plasma

Mass Spectrometry

Separation and Quantification by measurement of the intensity of mass charge ratios of atoms or molecules

Atoms and Isotopes

Atom = a nucleus and an electron cloud

The **nucleus** = group of **neutrons** and **protons**

	Charge	Mass			
Protons	+ 1,6 10⁻¹ ⁹ c	1 amu			
Neutrons	0	1 amu			

The **electron cloud** = group of electrons

ChargeMassElectrons $-1,6 \ 10^{-19} \text{ c}$ +/-0 amu

An atom is electrically neutral, i.e. the number of electrons is equal to the number of protons

Atoms, Isotopes and Atomic Mass											
Example	e: Copper										
Atomic Numbe	r: 29	but	2 isotopes								
63	³ Cu (69.2 9	⁶⁵ Cu (3	0.8 %)								
Protons	29			29							
Neutrons	34			36							

Result: the atomic Mass (Mean) equal to

 $(69.2/100 \times 63) + (30.8/100 \times 65) = 63.6 \text{ a.m.u.}$

First Ionization Potential

1 H 13,598														2 He 24,587			
3 Li 5,392	4 Be 9,323											5 B 8,298	6 C 11,260	7 N 14,534	8 O 13,618	9 F 17,423	10 Ne 21,565
11 Na 5,139	12 Mg 7,646											13 Al 5,986	14 Si 8,152	15 P 10,487	16 S 10,360	17 CI 12,968	18 Ar 15,760
19 K 4,341	20 Ca 6,113	21 Sc 6,561	22 Ti 6,828	23 V 6,746	24 Cr 6,767	25 Mn 7,434	26 Fe 7,902	27 Co 7,881	28 Ni 7,640	29 Cu 7,726	30 Zn 9,394	31 Ga 5,999	32 Ge 7,900	33 As 9,815	34 Se 9,752	35 Br 11,814	36 Kr 14,000
37 Rb 4,177	38 Sr 5,695	39 Y 6,217	40 Zr 6,634	41 Nb 6,759	42 Mo 7,092	43 Tc 7,28	44 Ru 7,361	45 Rh 7,459	46 Pd 8,337	47 Ag 7,576	48 Cd 8,994	49 In 5,786	50 Sn 7,344	51 Sb 8,64	52 Te 9,010	53 10,451	54 Xe 12,130
55 Cs 3,894	56 Ba 5,212	57 – 71 L	72 Hf 6,825	73 Ta 7,89	74 W 7,98	75 Re 7,88	76 Os 8,7	77 Ir 9,1	78 Pt 9,0	79 Au 9,226	80 Hg 10,438	81 TI 6,108	82 Pb 7,417	83 Bi 7,289	84 Po 8,417	85 At 9,5	86 Rn 10,749
⁸⁷ Fr	88 Ra 5,279	^{89 - 103}															

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
5,577	5,539	5,464	5,525	5,55	5,644	5,670	6,150	5,864	5,939	6,022	6,108	6,184	6,254	5,426
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
5,17	6,08	5,89	6,19	6,266	6,06	5,993	6,02	6,23	6,30	6,42	6,50	6,58	6,65	
	57 La 5,577 89 Ac 5,17	57 58 La Ce 5,577 5,539 89 90 Ac Th 5,17 6,08	57 58 59 La Ce Pr 5,577 5,539 5,464 89 90 91 Ac Th Pa 5,17 6,08 5,89	57 58 59 60 La Ce Pr Nd 5,577 5,539 5,464 5,525 89 90 91 92 Ac Th Pa U 5,17 6,08 5,89 6,19	57 58 59 60 61 La Ce Pr Nd Pm 5,577 5,539 5,464 5,525 5,555 89 90 91 92 93 Ac Th Pa U Np 5,17 6,08 5,89 6,19 6,266	57 58 59 60 61 62 La Ce Pr Nd Pm Sm 5,577 5,539 5,464 5,525 5,555 5,555 5,644 89 90 91 92 93 94 Ac Th Pa U Np Pu 5,17 6,08 5,89 6,19 6,266 6,06	57 58 59 60 61 62 63 La Ce Pr Nd Pm Sm Eu 5,577 5,539 5,464 5,525 5,555 5,644 5,670 89 90 91 92 93 94 95 Ac Th Pa U Np Pu Am 5,17 6,08 5,89 6,19 6,266 6,06 5,993	57 58 59 60 61 62 63 64 La Ce Pr Nd Pm Sm Eu Gd 5,577 5,539 5,464 5,525 5,555 5,644 5,670 6,150 89 90 91 92 93 94 95 96 Ac Th Pa U Np Pu Am Cm 5,17 6,08 5,89 6,19 6,266 6,06 5,993 6,02	57 58 59 60 61 62 63 64 65 La Ce Pr Nd Pm Sm Eu Gd Tb 5,577 5,539 5,464 5,525 5,555 5,644 5,670 6,150 5,864 89 90 91 92 93 94 95 96 97 Ac Th Pa U Np Pu Am Cm Bk 5,17 6,08 5,89 6,19 6,266 6,06 5,993 6,02 6,23	57 58 59 60 61 62 63 64 65 66 La Ce Pr Nd Pm Sm Eu Gd Tb Dy 5,577 5,539 5,464 5,525 5,555 5,644 5,670 61 61 6,150 5,864 5,939 89 90 91 92 93 94 95 96 97 98 Ac Th Pa U Np Pu Am Cm Bk Cf 5,17 6,08 5,89 6,19 6,266 6,06 5,993 6,02 6,23 6,30	57 58 59 60 61 62 63 64 65 66 67 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho 5,577 5,539 5,464 5,525 5,555 5,644 5,670 61.50 5,864 5,939 6,022 89 90 91 92 93 94 95 96 97 98 99 Ac Th Pa U Np Pu Am Cm Bk Cf Es 5,17 6,08 5,89 6,19 6,266 6,06 5,993 6,022 6,42	57 58 59 60 61 62 63 64 65 66 67 68 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er 5,577 5,539 5,464 5,525 5,555 5,644 5,670 61.50 5,864 Dy 6,022 6,108 89 90 91 92 93 94 95 96 97 98 99 100 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm 5,17 6,08 5,89 6,19 6,266 6,06 5,993 6,02 6,030 6,42 6,50	57 58 59 60 61 62 63 64 65 66 67 68 69 La 5,577 Ce 5,539 Pr 5,464 Nd 5,525 Pm 5,555 Sm 5,644 Eu 5,670 Gd 6,150 Tb 5,864 Dy 5,864 Ho 6,022 Er 6,108 Tm 6,184 89 90 91 92 93 94 95 96 97 98 99 100 101 Ac 5,17 Th 6,08 Pa 	57 58 59 60 61 62 63 64 65 66 67 68 69 70 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 5,577 5,539 5,464 5,525 5,555 5,644 5,670 61.50 5,864 Dy 100 6,184 6,254 89 90 91 92 93 94 95 96 97 98 99 100 101 102 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No 6,65 6

Isotopes and Mass Spectra

If we consider a single ionization, the m/z ratio is equal to the m, then isotopes of an element could be separated according to their masses.

In a first approximation, the sensitivity of the different isotopes is only proportional to isotopic abundances.

What is a plasma?

A **plasma** is an ionised gas but globally electrically neutral, and characterised by the presence of free electrons. Practically, all ionised gas could be considered as a plasma. We are also talking about the 4th state of matter Naturally present in the sun, milky way, lightning, northern lights...

Plasma Genesis

Plasma: Sample Behaviour

Conclusions on the Plasma

- Most elements are ionised at 90 % in the 6000°C of an ICP.
- Exceptions:
 - As: 52 %
 - Se: 33 %
 - S: 14 %
 - F: 9x10⁻⁴ %
- Single charged positive ions predominate
- Only a small population of double charged ions
 - Main Example: Ba = 1 2% of Ba^{++} and Ce^{++}

Components of an ICP-MS

- Sample introduction system
- Ionization source (Plasma)
- ► Ion extraction system (Interface)
- ► Ion focusing system (Ion optics)
- Mass filter (Mass spectrometer)
- ► Ion detection system (Detector)

Components of an ICP-MS

Overview of an ICP-Q-MS

Sample Introduction

Nebulizers

Must generate a fine and steady spray (i.e. < 10 μ m)

To be used with or without spray chamber regarding the design

Concentric Nebulizer Type

Operating principle : The sample is introduced into a capillary tube by a peristaltic pump or by auto-suction. The concentric gas flow around the capillary nebulizes the sample.

Spray Chamber

Target : to stop the greatest droplets (> 10 μ m).

3 designs:

- Single pass with impact bead
- Scott (Double Pass)
- Cyclonic (Baffle or unbaffled)

Interface

2 or 3 cones:

- Sampling or sampler
- Skimming or skimmer
- Hyper-skimmer

Allow introduction of ions into the vacuum chamber

Material : Nickel

Platinum (Cupper, Aluminium)

Ion Lens System

Serves to focus ions coming from the skimmer into the mass filter. Rejects neutral atoms and minimizes the passage of any photons from ICP.

Extraction - Extract and accelerate ions from the plasma
Einzel - Collimate and focus ion beam
Deflection - Bend ion beam to eliminate photons and neutrals
Focus - Refocus ion beam

. . .

Electrostatic Lenses

Ions, photons and neutrals all enter the spectrometer through the interface

the detector is sensitive to photons/neutrals, as well as ions

lons are charged particles

can be deflected using electric fields

Photons travel in straight lines

If ions can be deflected off-axis, they will be separated from non-charged species (photons/neutrals)

Ionic optics: Focusing Mirror

Mass Filter

Inorganic Mass Spectrometer

- ▶ m/z < 300
- Measurement of concentrations with accuracy and repeatability (absence of isobaric interference)
- Measurement of traces and ultra-traces: ppb in a solid

ng / L in a solution

Measurement of isotope ratios, including isotopic dilution.

Main Types of Mass Spectrometers

Mass filtration:

• Quadrupole filter

Selection in space:

• Sector (s)

Selection over time:

• Flight time

Quadrupole Filter

• 4 rods of section ideally elliptical or circular (for practical

reasons with a radius $r = 1.144 r^{\circ}$)

- Internal diameter, 2 r° (6 to 8 mm)
- Bar length

- Materials (golden ceramic, tungsten, etc.)
- High Frequency (1.5 to 3 MHz)

Quadrupole Filter

$$\Phi_0 = (Bia]s) + U + V\cos\omega t$$

Where :

Offset, **Bias** : Direct voltage applied identically to each of the rods

U: DC applied to each pairs of rods

V: RF applied to each pairs of rods

with **|V | > |U |**

 $\omega = 2\Pi v$ where v = frequency (fixed)

Quadrupole Filter

For a given field ϕ_0 ,

If m / z is the right value, the restoring force in the X and Y planes will exactly compensate for the attraction of the bars presenting a back and forth trajectory in the X plane and in the Y plane, i.e. in the end more or less helical.

ICP-MS High Resolution

Action of a Magnetic Sector

When the ions of charge z, of speed v are subjected to a magnetic field H, they undergo a force F:

$$F = H.z.v$$

Under the influence of this force, the ion deflects and acquires a circular path of radius r, with a centripetal force *F*:

$$F = \frac{m \cdot v^2}{r} \quad \text{And} \quad r = \frac{m \cdot v}{z \cdot H}$$

Action of an Electrostatic Field

The action of an electrostatic field leads to a force F:

Using an exit slit, we isolate a fraction of the beam of uniform energy, whatever the mass of the ion

Resolving Power : Exit Slit

Adjustable between 400 and over 10,000 Resolving Power

High Resolution

Resolving Power: over 10,000

²⁰²Hg separated from ¹⁸⁶W¹⁶O et 11 000 of RP

50 ppt Yb in 0.1% GdO (PR 13 500)

ICP-MC-MS High Resolution

The Time of Flight

Taking into account that:

$$E = \frac{1}{2}m.v^2$$

The flight time t is therefore equal to:
$$t = L \bigg[\frac{m}{2E} \bigg]^{1/2}$$

The time of flight is therefore proportional to the square root of the mass.

- X mass ion, slightly faster
- X mass ion, slightly slower

Design of a system ICP-TOF-MS

The Electron Multiplier

ICP-MS Analyses

Calibration Types

All Atomic Spectrometry techniques are comparative techniques involving calibration

- External calibration
- Standards additions
- ► (Internal calibration)
- Isotopic dilution (and ratio)

Semi-Quantitative Analysis

Useful to determine :

- The elements present and estimate the contribution of major species to the intensity of each mass
- Potential interference
- Optimal sample dilution
- Which isotope to use in order to avoid interference and select the appropriate internal standard

Quantitative Analysis

Analytical Comparison

=> Calibration

=> Representativity of the standards vs samples

External Calibration

- Easy to handle
- Limited by Matrix effects

Standard Addition

Internal Standard

How the Internal Standards Work

Added to each sample, standard and blank at identical

concentration

System therefore expects identical response from ISTDs in each solution

Ratio of measured ISTD response to expected ISTD

response is used to correct the response of the non-

internal standard elements accordingly.

The Role of Internal Standards

Correct for variations in response due to:

Matrix Effects

- Transport effects
- Nebulization effects
- Ionization effects
- Space-charge effects

Instrument Drift

Choice of the Internal Standard

It is assumed that the IS elements behave in the same way that the analytes do in the plasma when using this correction. Therefore, selecting the appropriate IS element is very important.

These are the things to take into consideration:

The element is not present in the sample solution. The mass number is close to that of the analyte. The ionization potential is similar to that of the analyte. Chemical characteristics

The ionization potential matching is extremely important for analytes with high ionization potentials.

Elements that are commonly used as IS are: ⁶Li, Sc, Ge, Y, Rh, In, Tb, Ho, Bi, Re

Isotopic Ratio Analysis

- Isotope ratio analysis is used to measure the relative amount of two (or more) isotopes of the same element
- Results are expressed as the ratio of the intensity of a specific isotope to the intensity of a reference isotope
- ► No calibration is required
- Accuracy is in the range of 0.1% to 2% and depends on the number of counts and the isotope ratio measured

Example: GSR

Isotopic Dilution

The determination of the concentration is based on the

measurement of the intensity ratio of two isotopes of the

same element in the sample

► The sample must be spiked with a known amount of an

enriched stable isotope which changes the natural isotope

ratio of the element

The spiked isotope is used for calibration

Isotopic Dilution

Pros

- ► High accuracy
- Calibration and internal calibration are performed with an isotope of the same element
- Automatic compensation for analyte lost during sample preparation
- Automatic compensation for chemical and physical interferences (matrix effects)
- No conventional external calibration required

Isotopic Dilution

Cons

- Need for enriched stable isotopes
- The standard of the stable isotope must be accurately certified
- Depending on the element or enrichment level, this standard can be very expensive
- Both the reference isotope and the analyte isotope must be free of spectral interference
- Not applicable to mono-isotopic elements (yet...)

Isotopic Dilution Accuracy and Precision Sample : 50 µg/l Ni in 10% HF

Run	Total Quant	Quant	Isotope Dilution
1	57.5	48.93	50.07
2	57.5	49.93	49.62
3	57.8	48.97	49.32
4	54.4	48.98	49.54
5	54.1	49.97	49.53
mean	56.3	49.36	49.62
recovery [%]	112.6	98.14	99.24

Interferences

Interferences in ICP-MS

- Non-spectroscopic Interferences
 - Result from the matrix or the analyzed element
 - > Physical
 - > Concentration in dissolved solids
 - > Space charge effect
 - > Ionization Suppression / Exaltation
 - > Speciation Influence
 - > Memory effect
- Mass Spectroscopic Interferences

Inability to separate same nominal masses

Effect of Dissolved Solids or acid concentration

- Signal suppression
- Deposits on sampler and skimmer cones
- Deposits on ion optics

Non-spectroscopic interferences: Physical - Resolutions

Imitate the composition of the sample matrix in the

standards - "Matrix matching"

- Acid matrix generally quite easy to reconstitute
- Difficult with regard to the matrix of the sample
- Use of internal standard
- Calibrate by standard additions

Space Charge Interface and Lens Region

Resolution of Non-spectroscopic Interferences Space - Charge Effect

- Sample dilution
- Use of an internal standard of mass similar to the analyte
- Elimination of the matrix (Preparation of the sample, ETV ...)
- Imitation of the composition of the sample matrix in the standards "Matrix matching"
- Calibration by standard additions

Ionization Suppression Plasma Region

Na \implies Na⁺ + e⁻ Zn⁺ + e⁻ \implies Zn

• Ex: High Na concentration depresses the signal

Resolution of Non-spectroscopic Interferences Ionization Suppression / Enhancement

- Sample dilution
- Elimination of the matrix (Preparation of the sample, ETV ...)
- Imitation of the composition of the sample matrix in the standards - "Matrix matching"
- Use of an internal standard of ionization potential similar to the analyte
- Calibration by standard additions

Mass Spectroscopic Interferences

- Isobaric
- Polyatomic
 - Argides
 - Oxides
 - Other (i.e. Chlorides, Hydrides, etc.)
- Doubly-charged
- Abundance in sensitivity

Isobaric Interferences

Interference generated by an isotope associated with an element different from the analyte, but with a mass / charge ratio sufficiently close to that of the analyte that it cannot be separated by the mass filter (quadrupole)

	Isotopic Abundance						
	46	47	48	49	50		
Ca	0,003		0,187				
Ti	8,0	7,3	73,8	5,5	5,4		

Isobaric Interferences: Solutions

Choice of another non-interfered isotope (⁴⁴Ca instead of ⁴⁰Ca
⁴⁰Ar)

Impossible for mono-isotopic elements

- Elimination of the matrix (Preparation of the sample, ETV ...)
- Instrument optimization to minimize interference
- Correction equation
- Collisional / reaction mechanism

Polyatomic Interferences

Polyatomic ion generated by the association of 2 (see more) isotopes creating an interference with the mass / charge ratio of the element analysed

Examples:

- ${}^{14}N_2^+ < {}^{28}Si^+$
- ${}^{40}\text{Ar}{}^{16}\text{O}{}^{+}$ < > ${}^{56}\text{Fe}{}^{+}$
- ⁴⁰Ar³⁵Cl⁺ < > ⁷⁵As⁺

Polyatomic Interferences: Solutions

- Choice of another non-interfered isotope
 - Impossible for mono-isotopic elements
- Optimize instrument to minimize interference
 - Oxides, doubly-charged ions
- Elimination of the matrix (Preparation of the sample, ETV ...)
- Correction equation
- Collisional / reaction mechanism

Interferences related to doubly charged ions

Interference generated by an isotope associated with another element than the analyte, but with a mass / charge ratio divided by two due to a double ionization

Example:
$${}^{138}Ba^{++} < {}^{69}Ga^{+}$$

⁴⁶Ti⁺⁺ < > ²³Na⁺

Interferences related to doubly charged ions

Optimization of the rate of double charges on the Barium (lowest 2nd ionization potential)

Choice of another non-interfering isotope (Ex: ⁷¹Ga instead of ⁶⁹Ga)

Collision Reaction System

Collision Reaction Cells : Operating Principle

Injection of a pressurized and potentially reactive gas

- which chemically or physically modifies an isobaric ion or polyatomic in a different ion which no longer interferes or that we can eliminate, or
- which combines with the analyte to form a polyatomic ion which can then be analysed on another mass Interference free

This device is inserted

between the device interface and the mass filter
or between two mass filters
CRC: device operation

The specific chemistry of the cell is dependent on the nature and density of the reaction gas, as well as the electric fields present in the cell (close to interstellar chemistry)

Mass filter: Triple quadrupole Elimination of interfering constituents

Courtesy : Agilent Technologies

ICP / MS Analyses : Pros and Cons

- Multi-elementary
- High productivity (routine)
- Analysis cost / element
- Rapid semi-quantitative analyses
- Easily interpretable mass spectra
- Isotope analyses
- Accepts a large number of sample introduction modes,
- Dynamic range (10⁴- 10⁸)

- Investment cost
- Operator qualification
- Maintenance cost and consumable
- Not recommended for the analysis of samples that are too concentrated (memory effect, cone plugging, etc.)
- Possible interferences but well identified and often correctable.
- Dynamic range(10⁴ 10⁸)

