

Nanoparticules: general introduction

Fabienne Séby

Use of nanoparticles

http://www.nanotechproject.org/cpi/

INVENTORY OF NANOTECHNOLOGY-BASED CONSUMER PRODUCTS

> 1600 products

TUNTWIN Use of NPs over time in daily products

Vance et al., Beilstein J. Nanotechnol., **2015,** 6, 1769–1780.

Number of products

TUNTWIN Properties of nanomaterials due to size reduction

INCREASE OF THE SPECIFIC SURFACE WITH THE DECREASE IN SIZE = INCREASE OF THE REACTIVITY OF THE MATERIAL

Ropers, Techniques de l'ingénieur, **2020**, NM4500 v2.

TUNTWIN Definitions associated with nanomaterials

SEVERAL DEFINITIONS

- International Organization for Standardization
- European Commission
- Ministère de la transition écologique et solidaire

ISO/TS 80004-1:2005 2011/696/EU (recommendation) Décret n°2012-32

A natural, incidental or manufactured material containing particles, in an unbound state or as aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 - 100 nm

A wide variety of shapes and sizes

Aggregates and agglomerates

Aggregates of NPs

It is considered as a particle containing strongly bound or fused particles

Agglomerates of NPs

A collection of weakly bound particles or aggregates where the resulting external surface area is similar to the sum of the surface areas of the individual components

Exposure routes and risks associated

with nanoparticles

NPs exposure, distribution and excretion routes in the body

TUNTWIN

Possible toxicity mechanisms of NMs on bacterial cells

- **Size**: a decrease in size generally increases NPs penetration in cells and then their toxicity.
- **Surface**: A decrease in size increases the specific surface and then the chemical and biological reactivity.
- **Number**: the increase of the number of NPs promotes their penetration and persistance in biological tissues. More easily bioaccumulated and distributed in the body.
- **Shape**: nanotoxicity depends on the shape because of the cell envelopment process during endocytosis or phagocytosis. For exemple, endocytosis of a spherical form would be more easy than a nanotube.
- **Aggregation/agglomeration state**: modifies NPs deposition and penetration through cells and then their biological effects.
- **Crystalline structure**: plays a major role in cell absorption and the generation of reactive oxygen species (ROS). For example, toxicity of the two crystalline structures of TiO₂ is different for a similar size. Rutile would produce DNA oxidation contrary to anatase.
- Chemical nature: for a same size, shape or specific surface, the NPs chemical nature can influence their toxicity. For example, SiO₂ and ZnO NPs with a same size (20 nm) have different toxicity on mice, SiO₂ alters the DNA structure whereas ZnO induces an oxidative stress.

ENDOCYTOSIS Phagocytosis

NPs physico-chemical properties

affecting their toxicity

Life cycle of NPs in the environnement

TUNTWIN

Dominant fate pathways of NMs in the environment

----- Poorly researched pathways

TUNTWIN _

Cornelis et Lahive, Occurrence, behavior and effects of inorganic nanoparticles in the environment, In: Analysis and characterization of metal-based nanomaterials, **2021**, 93, 1–344.

Forms of occurrence of inorganic NMs in environmental compartments

Dissolution: $ZnO > Ag > Cu > CeO_2 > TiO_2 \sim Au$

Cornelis et Lahive, Occurrence, behavior and effects of inorganic nanoparticles in the environment, In: Analysis and characterization of metal-based nanomaterials, **2021**, 93, 1–344.

TUNTWIN

TUNTWIN Dominant form of NPs in the environmental compartments

	De minerat ferra		Expected concentrations		(ma/
Compartment	of occurrence	Dominant process	TiO ₂	Ag	、 U
Freshwater		Heteroaggregation and sedimentation	10 ⁻³	10 ⁻⁶	
Marine	ser ser	Coating	NA	NA	
Agricultural soil ^a		Deposition	10 ⁴	10 ⁰	
Other soil		Deposition	10 ³	10 ¹	
Sediment		Deposition	10 ³	10 ¹	
Landfill		Deposition	10 ³	10 ¹	
Air		Heteroaggregation	10 ⁻⁶	10 ⁻¹⁰	С е с З

Cornelis et Lahive, Occurrence, behavior and effects of inorganic nanoparticles in the environment, In: Analysis and characterization of metal-based nanomaterials, **2021**, 93, 1– 344.

Nanoparticles and consumers

LES NANOPARTICULES

VERS UN PROCHAIN SCANDALE SANITAIRE ?

Alimentation, vêtements, cosmétiques... ON EN TROUVE PARTOUT !

Tatouages

Alerte

sur les

encres

Des traces de nanomatériaux détectées dans du lait maternisé

Par Lucile Morin - 29 mai 2016 à 21-11

Des nanoparticules cachées dans nos assiettes

titane sous forme « nano ». Contrairement aux dires des fabricants

Partager 630
 Tweeter
 Ervoyer
 Commentaires

Nanoparticles used in consumer products

TUNTWIN

Nanotechnol., **2015**, 6, 1769–1780.

Nanoparticles used in consumer products

Salou S., PhD thesis, 2021.

TUNTWIN

Inorganic NPs used in consumer products

			Food
Particl	es Products	Main use	Additive
TiO ₂	Food (sweets & sauces), paints, textiles, hygiene products, food packaging, cosmetics, drugs,	 ✓ White pigment ✓ UV filter (in combination with ZnO) ✓ Flavour enhancer (dry fruits, soups, mustare ✓ Self cleaning, 	E171 d)
Ag	Food packaging, textiles, food, food supplements, hygiene products, medical devices, textiles	✓ Antimicrobial agent✓ Decorative agent for patisserie	E174
SiO ₂	Food, powder soups, coffee, hygiene products, mayonnaise	 ✓ Anti-caking agent ✓ Improvement of texture and smoothne 	E551 ss
lron oxide	Food	✓ Colour agent✓ Increase of bioavailability	E172

TUNTWIN

TUNTWIN -

Crystalline structures

TiO₂ NPs

Brookite

Mainly used white pigment, mostly as anatase or as a mixture of anatase/rutile Candies Chewing-gum Processed fishery products Sauces

TiO₂ NPs in food

Ice-creams, ...

E171

- Powder used since a long time at the nonnanometric scale
- But 15 to 55 % present as nanoparticules
- Size distribution between 30 and 400 nm

Food packaging as a UV barrier or as an antibacterial agent

TiO₂ NPs in cosmetics

Used as white pigment

Not allowed in cosmetics (EU)

Personal care products ??

Used as anti-UV filter

195 60 35 15 10 nm 195nm 10nm 65 15 10 nm

Allowed (EU, FDA)

TiO₂ very photoreactive

Production of ROS giving cell damage

- Often used in association with ZnO NPs
 - TiO₂: against UVA
 - ZnO: against UVB (200 nm or smaller, 25% max, as wurtzite)
- Mainly as rutile or as rutile/anatatase combination

TUNTWIN Other type of TiO₂ NPs in food and cosmetics

Always new products based on nanoparticles for "new properties":

Glitter effect in make-up, confectionery, spices, gastronomic cook

TUNTWIN TiO₂ NPs in consumer products: health effects

• Skin with lesions: possible penetration ?

Possible carcinogen by ingestion ? Possibility to cross the placental barrier ?

Increasing TiO₂ NPs concentrations in all the compartments

TUNTWIN -

Environnement	Concentration en TiO ₂ prédite		
Air	0.001 μg m ⁻³		
Eaux de surface	0.53 μg L ⁻¹		
Sédiments	1.9 mg kg ⁻¹ par an		
Boues de station d'épuration	170 mg kg ⁻¹		
Sol naturel et urbain	0.13 μg kg ⁻¹ par an		
Sol traité avec boues de station d'épuration	1.2 mg kg ⁻¹ par an		

Food and cosmetics: legislation

FOOD

- EU n°1169/2011 (INCO): labelling of all food products which contain nanoparticles in their ingredients
- Since 2020, the use of E171 is bannished in France and since 2022 in Europe

COSMETICS

- EU n°1223/2009: only black carbon, TiO₂ and ZnO are allowed as « insoluble NPs ». Labelling of cosmetic products which contain NPs in their ingredients
- Other EU legislation in April 2022 forbidden the use of NMs including Cu, Au, Pt (as NMs and colloids)

Product labelling

Techniques for NPs characterization

TUNTWIN Main techniques used for inorganic NPs

Spectrochim. Acta B, 2016, 125, 66–96.

Electronic microscopy techniques

TEM, STEM, SEM or MEB, AFM

Information obtained:

- Imaging of nano-objects
- Mean / median / modal diameters
- Particle number distribution
- Composition (if EDX)
- Aggregation and agglomeration state

Advantages

\checkmark Direct information on the shape

✓ Technique of reference

Drawbacks

- Cost of the analysis
- Long and complex

Particles separation from 1 to 50 000 nm as the function of the size and mass

Advantages

✓ Analysis of a wide range of sizes

- \checkmark Good separation efficiency
- ✓ Wide variety of particles

TUNTWIN

Drawbacks

- Particle-particle and particle-membrane interactions
- Long optimization and data interpretation often difficult

UNT

The spICP-MS technique

The basics for NPs analysis by spICP-MS

- Spherical particles
 - Low dwell time
- High dilution of samples: 1 particule \rightarrow 1 pulse

Information obtained:

- Mean / median diameter
- Particle size distribution
- NPs concentration
- Dissolved element concentration

NP Dissolved (background)

Advantages

Drawbacks

- Limited to ICP-MS element detectable
- Supposedly spherical shape
- Minimal diameter different as the function of the NPs type
- Same interferences than those observed by ICP-MS

✓ Simple

- ✓ Fast
- ✓ Sensitive
- ✓ Specific

Use of the spICP-MS technique

Vidmar et al., Detection and characterization of metal-based nanoparticles in environmental, biological and food samples by single particle industively coupled plasma mass spectrometry, In: Analysis and characterization of metal-based nanomaterials, **2021**, 93, 345–380.

TUNTWIN Sample preparation before NPs analysis

NP NP

Sample

Objectives

- Obtain a representative suspension
- Reduce the complexity of the sample
- Isolate NPs from the matrix
- Preconcentrate

Difficulties

- High reactivity of the NPs (aggregation/agglomeration)
- Isolate NPs from the matrix
- Avoid NPs dissolution

Centrifugation and filtration are not recommended

Sample preparation

Sample

NPs extraction in liquid or solid samples

H₂O Surfactants Buffer solutions

NP

NP

NP

Matrix degradation & NPs extraction

Acids

Oxidants

Alkaline reagents Enzymes

Extracts purification

Fat: hexane Proteins: trichloracetic acid Metal ions: EDTA

baths 5 **Dispersion** (sonication with probe

Analysis

Influence of the dispersion media on TiO₂ NPs size in urine samples assisted by sonication (probe) before spICP-MS analysis

TiO₂ NPs analysis in urine samples

Presence of salts resulting in NPs aggregation/agglomeration

MFS: most frequent size AS: average size

Salou et al., Anal. Bioanal. Chem., 2020, 412, 1469–1481.

TUNTWIN

TUNTWIN TiO₂ NPs extraction in fat food samples

- Nanoparticles in food and cosmetic products:
 - Industrial use since a long time

before EXXX and now « nano »

- Toxicity not well known yet
- Analytical techniques now available:
 - Inorganic NPs: spICP-MS
 - Organic NPs: AF4-MALLS
- Urgent needs for quality control tools:
 - Standardised methods
 - Certified Reference Materials
 - Interlaboratory exercices

Conclusion

François Auger Guillaume Bucher

Ultra Traces Analyses Aquitaine

Inmaculada de La Calle Mathieu Menta Marlène Klein

