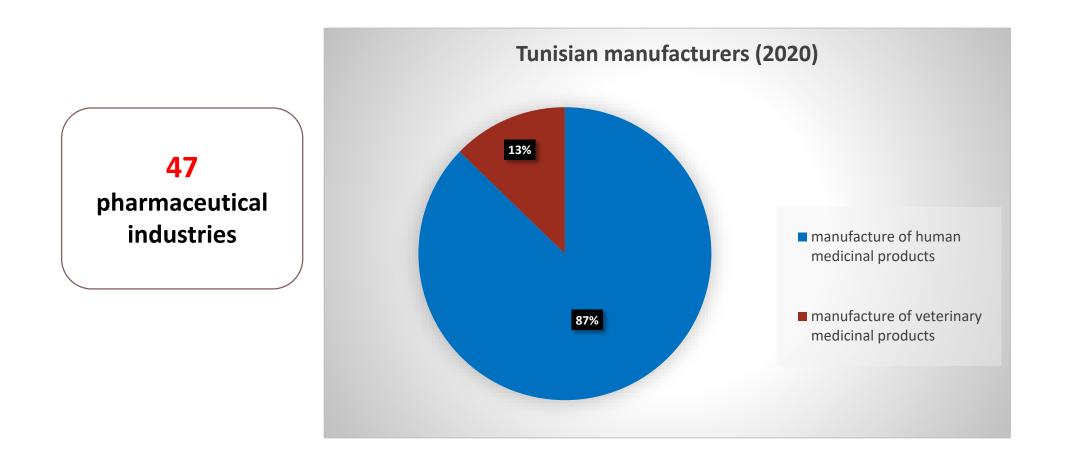
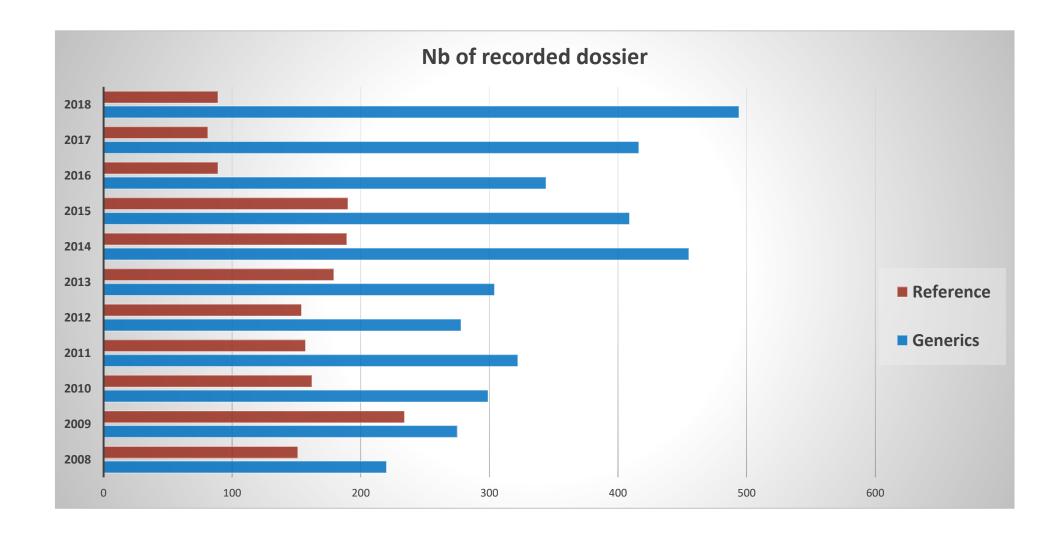
The pharmaceutical industry in Tunisia

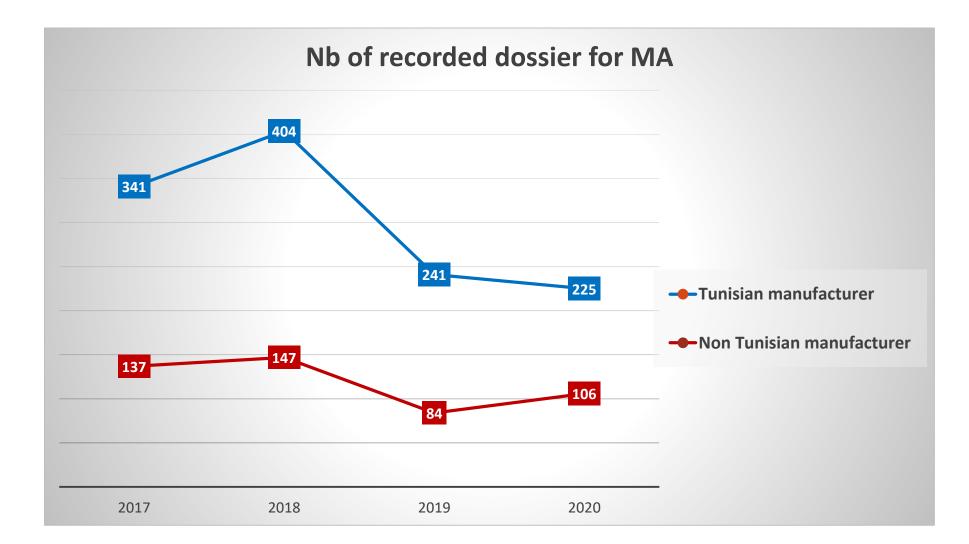
TUNTWIN Project «Stakeholders Event»

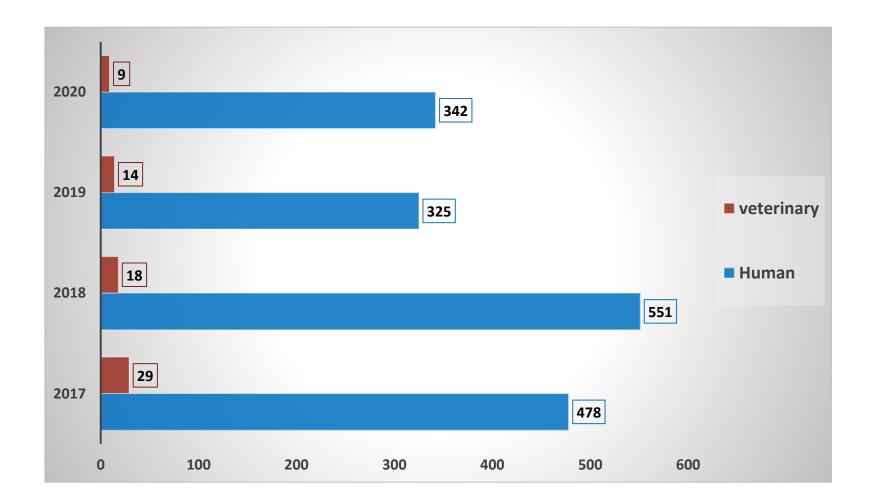


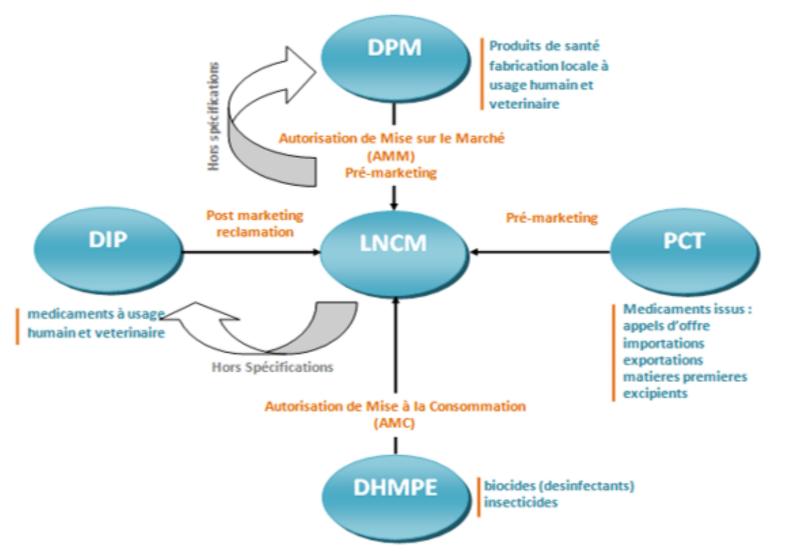
HANÈNE OUESLATI


ASSOCIATE PROFESSOR IN ANALYTICAL CHEMISTRY, FPHM HEAD OF THE SERVICE OF ANALYTICAL CHEMISTRY, LNCM

Monday, November 15, 2021


Drug Tunisian Manufacturers


Generic versus reference medicinal product


Marketing Authorization

Marketing Authorization

Regulatory structures : Organization

Ensure adequate and reliable supply of safe effective and quality-

controlled drugs, and promote its rational use

Enhance the governance of the health system and improve the quality and

the cost-effectiveness of health care services

Support the Local Industry while maintaining and continuously

upgrading its standards to meet the International requirement.

Enable it to increase, its local Market Share and expand to Export
 Countries.

Quality control for medicines appliying for marketing authorization

(AMM) during registration process, variations or renewal.

Quality control for medicines for human and veterinary use in addition

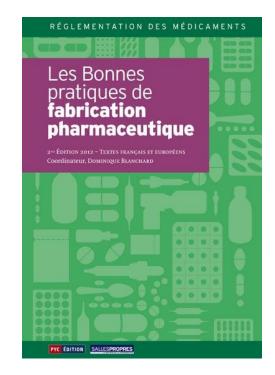
to raw materials and insecticides.

Quality control for all medicines marketed in Tunisia before

commercialization in collaboration with the central pharmacy of

Tunisia PCT (Pre-marketing)

Quality control during inspection operations especially in case of


complaints and post-marketing

Guidelines ICH

ICH : International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH)

Quality Guidelines (Q) : ICH Q1 \rightarrow Q12.

Safety guidelines (S) : ICH E1 → ICH E18

Efficacy guidelines (E) : ICH E1 → ICH E18

Multidisciplinary guidelines (M) : ICH M1 → ICH M8

INTERNATIONAL CONFERENCE ON HARMONISATION (ICH) QUALITY GUIDELINES

> TICAL BOLOGICS AND MEDICAL DEVICE GUIDANCE DOCUMENTS

Guidelines EMA

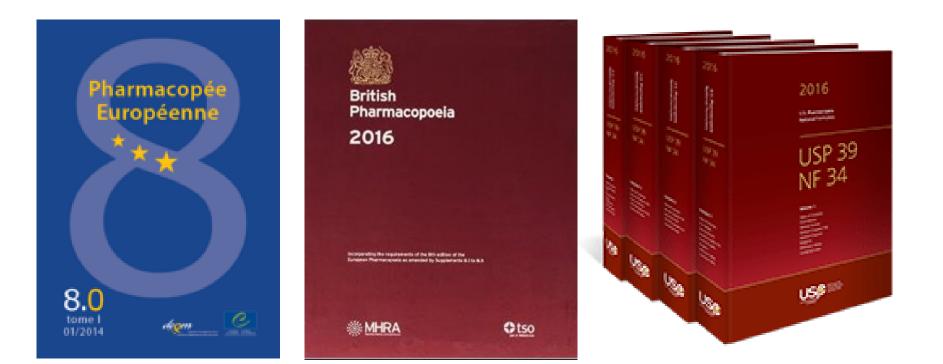
- Decentralized agency of the European Union (EU) responsible for the scientific evaluation, supervision and safety monitoring of medicines in the EU.
- Networking organization whose activities involve thousands of experts from across Europe.

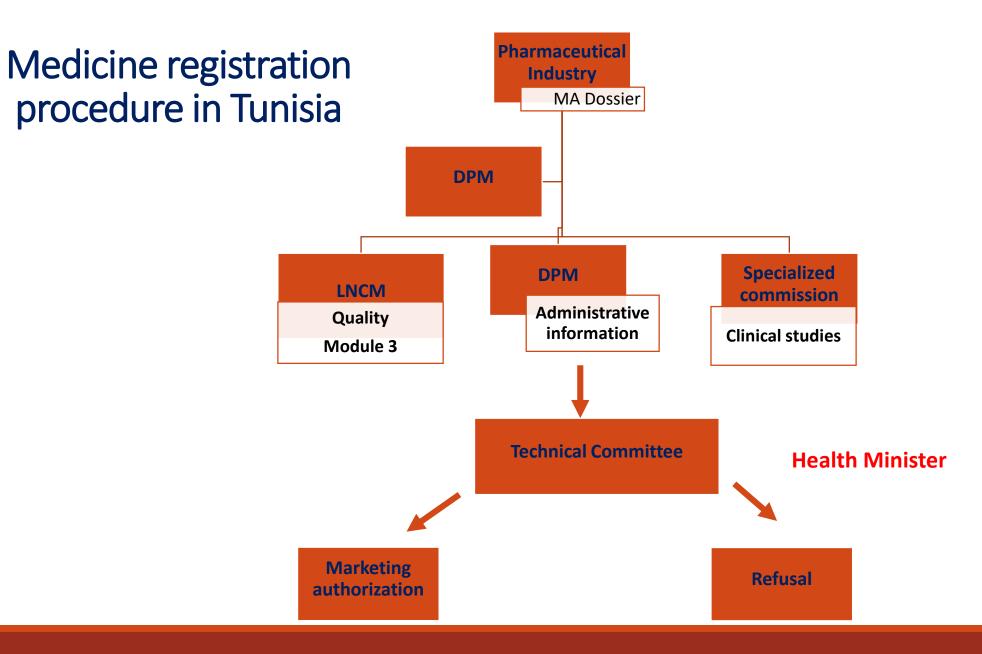
14

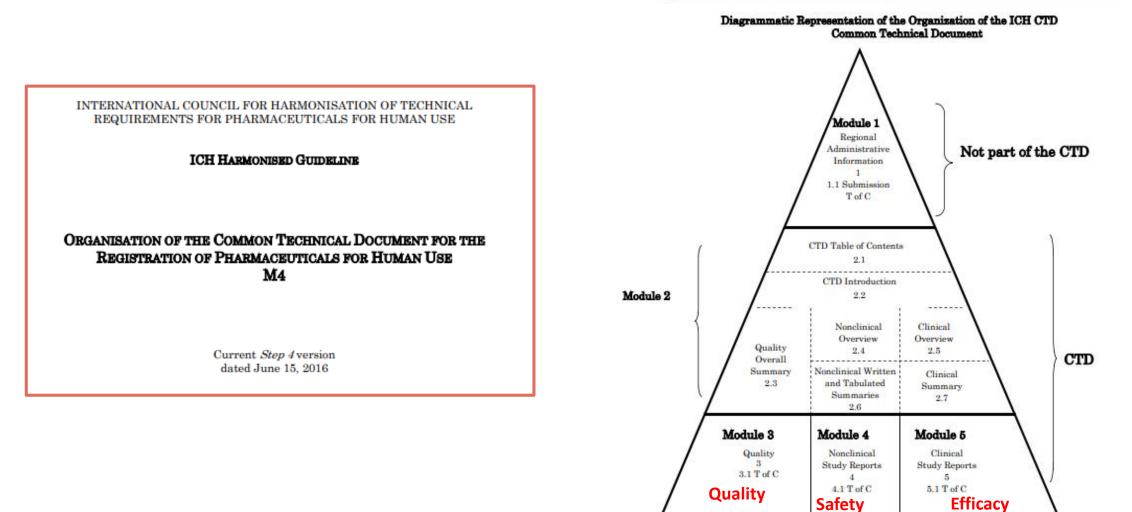
Guidelines OMS

> Lead and coordinate global health within the United Nations system.

> Set standards and criteria, promote and monitor their implementation


Guidelines FDA


➤ The Food and Drug Administration is responsible for protecting the public health by ensuring the safety, efficacy, and security of human and veterinary drugs, biological products, and medical devices; and by ensuring the safety of our nation's food supply, cosmetics, and products that emit radiation.



Medicine registration procedure in Tunisia

Organisation of The Common Technical Document

Quality : Module 3 CTD sections

3.2.S.1 Gener Information		3.2.P.1 Description and Composition	Formulation composition Excipient levels and function
3.2.S.2 Manufacture	Manufacturer, process description Controls, validation, process develop.	3.2.P.2 Pharm Development	 Formulation, process, container dev. Microbial attributes, compatibility
3.2.S.3 Characterizati	• Structural elucidation • Impurity sources, identification	3.2.P.3 Manufacture	Manufacturer, process description Controls, validation
3.2.S.4 Contr	ol • Specification, methods, validation • Batch analyses, specification justification	3.2.P.4 Control Excipients	 Non/Compendial, origin, novel Specification, justification
3.2.S.5 Refere Standards	• Purchase information • Method of preparation, characterization	3.2.P.5 Control DP	 Specs, methods, validation, impurities Batch analyses, specification justification
3.2.S.6 Contai Closure	ner • Description, materials, dimensions • Specifications, drawings	3.2.P.6 Reference Standards	 Purchase information Method of preparation, characterization
3.2.S.7 Stabil	• Summary, stability protocol/commitment • Stability Data	3.2.P.7 Container Closure	 Description, materials, dimensions Specifications, drawings
		3.2.P.8 Stability	 Summary, stability protocol/commitment Stability Data

Quality : Module 3 CTD sections

The quality of **drug substances** and **drug products** is determined by

- Their design, development, in-process controls, GMP controls, and process validation
- specifications applied to them throughout development and manufacture

Quality : Specifications / criteria

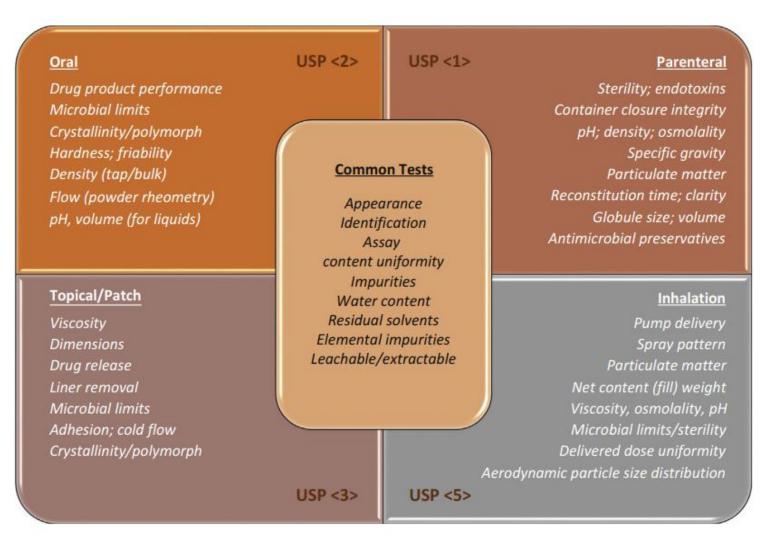
- A specification is defined as a list of tests, references to analytical procedures, and appropriate acceptance criteria, which are numerical limits, ranges, or other criteria for the tests described.
- It establishes the set of criteria to which a drug substance or drug product should conform to be considered acceptable for its intended use.

Quality : Specifications /criteria

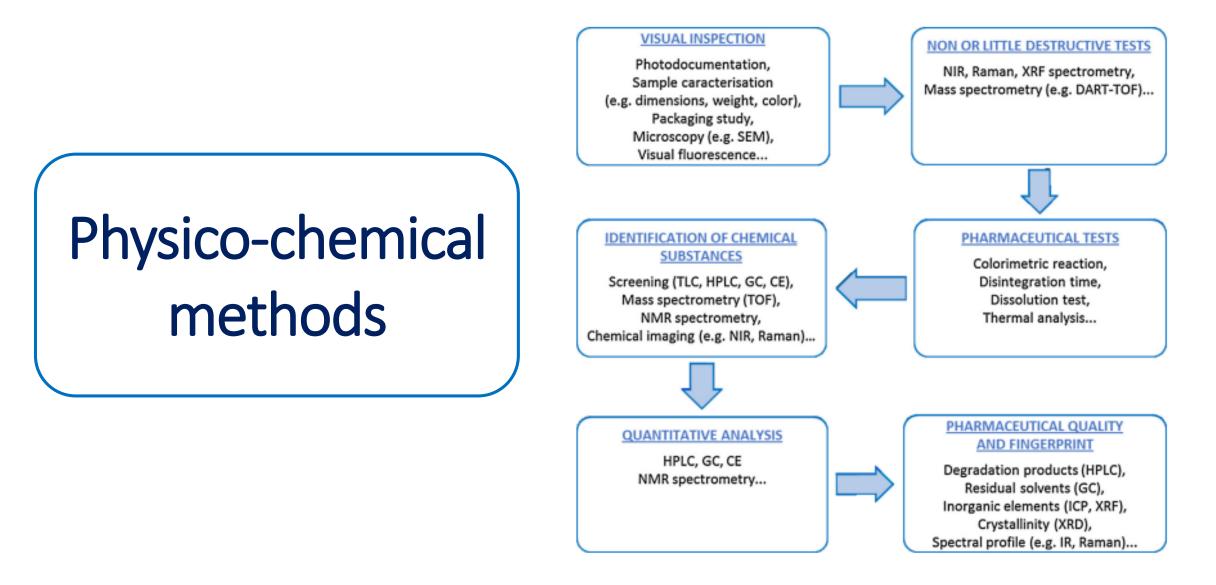
- "Conformance to specifications" means that the drug substance and / or drug product, when tested according to the listed analytical procedures, will meet the listed acceptance criteria.
- Specifications are critical quality standards that are proposed and justified by the manufacturer and approved by regulatory authorities as conditions of approval.

Quality : Specifications / criteria

ICH HARMONISED TRIPARTITE GUIDELINE		Universal Test/Criteria	Specific Tests / Criteria
SPECIFICATIONS: TEST PROCEDURES AND ACCEPTANCE CRITERIA FOR NEW DRUG SUBSTANCES AND NEW DRUG PRODUCTS: CHEMICAL SUBSTANCES		Description	Physicochemical properties
Q6A		Identification	Particle size
Current Step 4 version dated 6 October 1999	Drug Substance	Assay	Polymorphisme form
		impurities	Tests for chiral new drug substances
(Changel)			Inorganic impurities
			Microbial limits
			Water content


Quality : Specifications / criteria

ICH HARMONISED TRIPARTITE GUIDELINE		Universal Test/Criteria	Specific Tests / Criteria
SPECIFICATIONS: TEST PROCEDURES AND ACCEPTANCE CRITERIA		Description	Dissolution:
FOR NEW DRUG SUBSTANCES AND NEW DRUG PRODUCTS: CHEMICAL SUBSTANCES		Identification	Disintegration
Q6A Current Step 4 version dated 6 October 1999		Assay	Antimicrobial preservative content
	Drug Product	Impurities	Antimicrobial preservative content
			рН
			Alcohol content


Specification tests by dosage form

✤ ICH Q6

✤ EP, USP

Analytical methods in the clinical phase of development John D. Orr , George L. Reid

H. Rebiere et al. / Journal of Pharmaceutical and Biomedical Analysis 142 (2017) 286–306

Impurities

Organic impurities (process and drug related)

Inorganic impurities (from manufactoring process, dentified and

known)

Residual solvents (organic or inorganic liquids)

ICH HARMONISED TRIPARTITE GUIDELINE

IMPURITIES IN NEW DRUG SUBSTANCES Q3A(R2)

> Current Step 4 version dated 25 October 2006

Classification of impurities

Starting materials

Organic impurities **By-products**

Intermediates

Degradation product

Reagents, ligands and catalysts

Organic impurities : regulation and methods

Organic Impurities				
Sub Type	Process related	degradants	Chiral impurities	Genotoxic impurities
Common analytical technique	HPLC, GC, GCMS, LCMS, TLC	HPLC, GC, GCMS, LCMS, TLC	HPLC, GC, CE	HPLC, GC, GCMS, LCMS, NMR, IC
API Guidance Reference and limits	ICH Q3A (0,03% to 0,15% as per dose), ICH Q6, USP, EP	ICH Q3A (0,05% to 0,15% as per dose), ICH Q6, USP, EP	ICH Q3A (0,05% to 0,15% as per dose), ICH Q6, FDA guidance, USP, EP	ICH M7, S9, FDA guidance, as per TTC limit and duration of treatment
Drug product Guidance Reference and limits	Usually not monitoring in drug product	ICH Q3A (0,2% to 1% as per dose), ICH Q6, USP	Usually not monitoring in drug product. Evaluation study done in few cases	Usually not monitoring in drug product. Evaluation study done in few cases

Classification of impurities

Reagents, ligands and catalysts

Inorganic impurities

Heavy metals or oyher residual metals

Inorganic salts

Other materials (e.g., filter aids, charcoal)

Inorganic impurities : regulation

Normally detected and quantified using pharmacoepial or

other appropriate procedures

Carry-over of catalysts to the new drug substance should be

evaluated during development

Inorganic impurities : regulation

ICH HARMONISED GUIDELINE

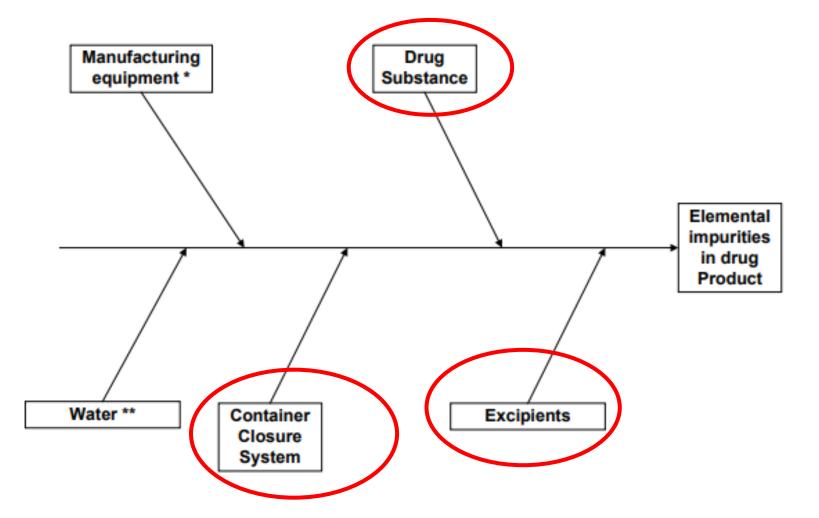
GUIDELINE FOR ELEMENTAL IMPURITIES

Q3D(R1)

Final version Adopted on 22 March 2019

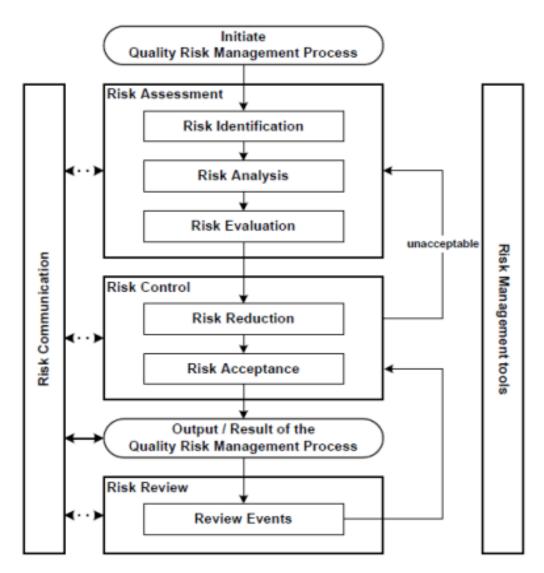
CLASS 1

- Human toxicants that have limited or no use in the manufacture of pharmaceuticals.
- Their presence in drug products typically comes from commonly used materials. require evaluation during the risk


CLASS 2

- Generally considered as route-dependent human toxicants :
 - Class 2A : high probability of occurrence, require evaluation during the risk assessment
 - Class 2B : reduced probability of occurrence

CLASS 3


- The elements in this class have relatively low toxicities by the oral route of administration.
- Require consideration in the risk assessment for inhalation and parenteral routes

Inorganic impurities : potentials sources

https://database.ich.org/sites/default/files/Q3D-R1EWG_Document_Step4_Guideline_2019_0322.pdf

https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_Guideline.pdf

Inorganic impurities : regulation

Element	Class	If intentionally added (all routes)	If not intentionally added		
			Oral	Parenteral	Inhalation
Cd	1	yes	yes	yes	yes
Pb	1	yes	yes	yes	yes
As	1	yes	yes	yes	yes
Hg	1	yes	yes	yes	yes
Co	2A	yes	yes	yes	yes
v	2A	yes	yes	yes	yes
Ni	2A	yes	yes	yes	yes
Tl	2B	yes	no	no	no
Au	2B	yes	no	no	no
Pd	2B	yes	no	no	no
Ir	2B	yes	no	no	no
Os	2B	yes	no	no	no
Rh	2B	yes	no	no	no
Ru	2B	yes	no	no	no
Se	2B	yes	no	no	no
Ag	2B	yes	no	no	no
Pt	2B	yes	no	no	no
Li	3	yes	no	yes	yes
Sb	3	yes	no	yes	yes
Ba	3	yes	no	no	yes
Mo	3	yes	no	no	yes
Cu	3	yes	no	yes	yes
Sn	3	yes	no	no	yes
Cr	3	yes	no	no	yes

Table 5.1: Elements to be Considered in the Risk Assessment

https://database.ich.org/sites/default/files/Q3D-R1EWG_Document_Step4_Guideline_2019_0322.pdf

Inorganic impurities : regulation

The data that support this risk assessment can come from a number of sources that include :

- Prior knowledge
- Published literature
- Data generated from similar processes
- Supplier information or data
- Testing of the components of the drug product;
- Testing of the drug product.

Inorganic impurities : methods

196

Figure 5. Erroneous reporting of heavy metals as per USP <231> heavy metals [45].

DOI: 10.4236/ajac.2018.94016

American Journal of Analytical Chemistry

Non specific !!

replaced nonspecific heavy metal tests

with specific quantifying techniques

and specifications were included

Inorganic impurities : methods USP

(233) ELEMENTAL IMPURITIES—PROCEDURES

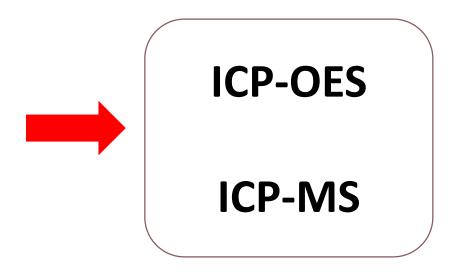
INTRODUCTION

This chapter describes two analytical procedures (*Procedures 1* and 2) for the evaluation of the levels of the elemental impurities. The chapter also describes criteria for acceptable alternative procedures. By means of validation studies, analysts will confirm that the analytical procedures described herein are suitable for use on specified material.

Use of Alternative Procedures

The chapter also describes criteria for acceptable alternative procedures. Alternative procedures that meet the validation requirements herein may be used in accordance with *General Notices*, 6.30 Alternative and Harmonized Methods and Procedures. Information on the Requirements for Alternate Procedure Validation is provided later in this chapter.

Speciation


The determination of the oxidation state, organic complex, or combination is termed *speciation*. Analytical procedures for speciation are not included in this chapter, but examples may be found elsewhere in USP–NF and in the literature.

PRÓCEDURES

COMPENDIAL PROCEDURES 1 AND 2

System standardization and suitability evaluation using applicable reference materials should be performed on the day of analysis.

Procedure and detection technique: Procedure 1 can be used for elemental impurities generally amenable to detection by inductively coupled plasma-atomic (optical) emission spectroscopy (ICP-AES or ICP-OES). Procedure 2 can be used for elemental impurities generally amenable to detection by ICP-MS. Before initial use, the analyst should verify that the procedure is appropriate for the instrument and sample used (procedural verification) by meeting the alternative procedure validation requirements below.

Classification of impurities

Residual solvents

Class 1 : Solvents to be avoided (human

carcinogens, environmental hazards

ICH HARMONISED GUIDELINE

IMPURITIES: GUIDELINE FOR RESIDUAL SOLVENTS Q3C(R8)

Current Step 4 version dated 22 April 2021 **Class 2 : Solvents to be limited** (Non genotoxic animal carcinogen or possible causative agents for other irreversible toxicity)

Class 3 : Solvents with low toxic potential

Residual solvents: regulation

ICH HARMONISED GUIDELINE

IMPURITIES: GUIDELINE FOR RESIDUAL SOLVENTS Q3C(R8)

Current Step 4 version dated 22 April 2021 TABLE 1. Class 1 solvents in pharmaceutical products (solvents that should be avoided).

Solvent	Concentration limit (ppm)	Concern
Benzene	2	Carcinogen
Carbon tetrachloride	4	Toxic and environmental hazard
1,2-Dichloroethane	5	Toxic
1,1-Dichloroethene	8	Toxic
1,1,1-Trichloroethane	1500	Environmental hazard

Residual solvents: regulation

ICH HARMONISED GUIDELINE

IMPURITIES: GUIDELINE FOR RESIDUAL SOLVENTS Q3C(R8)

Current Step 4 version dated 22 April 2021

TABLE 2. Class 2	solvents in	pharmaceutical	products.
------------------	-------------	----------------	-----------

Solvent	PDE (mg/day)	Concentration limit (ppm)
Acetonitrile	4.1	410
Chlorobenzene	3.6	360
Chloroform	0.6	60
Cumene ¹	0.7	70
Cyclohexane	38.8	3880
Cyclopentyl methyl ether ²	15.0	1500
1,2-Dichloroethene	18.7	1870
Dichloromethane	6.0	600
1,2-Dimethoxyethane	1.0	100
N,N-Dimethylacetamide	10.9	1090

Residual solvents: Methods

Residual solvents are typically determined using chromatographic techniques such

as gas chromatography. Any harmonised procedures for determining levels of residual

solvents as described in the pharmacopoeias should be used

If only Class 3 solvents are present, a non-specific method such as loss on drying may be used.

Conclusion

Protect the public health by ensuring the safety, efficacy, and security of human and veterinary drugs

Speed innovations that make medical products more effective, safer, and more affordable

Possible only through regulatory watch and specific and innovative

analysis methods in **collaboration** with **experts** and **scientists**

The pharmaceutical industry in Tunisia

Hanène Oueslati

Associate Professor in Analytical Chemistry, FPHM Head of the service of analytical chemistry, LNCM

Thank you for attention